1、学科教师辅导讲义学员编号: 年 级:中考一轮复习课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第07讲-反比例函数授课类型T同步课堂P实战演练S归纳总结教学目标 理解反比例函数的定义,熟练利用待定系数法求解表达式; 熟练掌握反比例函数的图像与性质; 掌握反比例函数与一次函数的相关应用,学会利用函数图像解决问题; 掌握系数K的几何意义并解决问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)反比例与反比例函数 1、成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。 2、反比例函数 (1)定义 (2)反比例
2、函数解析式的特征 等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1. 比例系数 自变量的取值为一切非零实数。 函数的取值是一切非零实数。 (3)待定系数法 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)。 (二)反比例函数的图像与性质1、图像的画法:描点法(列表、描点、连线)2、图像特征:(1)反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。(2)反比例函数的图像是是轴对称图形(对称轴是或),也是中心对称图形
3、。(3)系数的几何意义:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。(三)反比例函数与直线相交问题1、解决直线与双曲线的交点问题时,就是将反比例函数与直线联立组成方程组求得方程组的解即为交点坐标;2、判断直线与双曲线有无公共点,可用=b2-4ac来确定;3、交点个数可以通过的正负判断:1)0,有两个交点; 2)=0,只有一个交点; 3)0,没有交点。(四)用反比例函数图解不等式 1、比较反比例函数的大小 1)利用反比例函数的增减性可以比较反比例函数值的大小,也可以利用反比例函数的图形比较大小; 2)根据反比例函数的增减性可以确定反比例函数系数的符号。 2、利用函数图像解不等式 模型建立:
4、如图,一次函数y=kx+b的图像与反比函数y=的图像相交于M,N两点。1) 利用图中图像求反比例和一次函数的解析式;2) 根据图像写出关于的方程y=kx+b=的解;3) 根据图像写出关于x的不等式:kx+b的解集。3、求线段的最值1)给出x与y的取值范围,求线段最短或最长距离转换成求两点之间的距离,并结合反比例图像的对称性质计算;2)求反比例函数外的点到反比例函数上点通过对称性质,转换到同一线段求解。4、系数“K”的几何意义:求图形的面积或已知面积求K值1)反比例函数上的任意一个点的面积(向x轴、y轴作垂线形成的矩形,或者与原点形成的三角形面积分别为k、;2)技巧:求解析式或面积都必须转换成反
5、比例函数上的点计算。考点一: 反比例函数的定义与表达式例1、下列函数:xy=1,y=,y=,y=,y=2x2中,是y关于x的反比例函数的有()个A1个 B2个 C3个 D4个【解析】A例2、函数是反比例函数,则m的值是()Am=1 Bm=1 Cm= Dm=1【解析】D考点二: 反比例函数的图像及性质例1、如图所示,点P(3a,a)是反比例函数y=(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为()Ay= By= Cy= Dy=【解析】D 例2、如图,正方形OABC,ADEF的顶点A、D、C在坐标轴上,点F在AB上,点B、E在函数y=(x0)的图象上,则点E的坐标是()A
6、(,)B(,)C(,)D(,)【解析】A例3、二次函数y=ax2+bx+c(a,b,c为常数且a0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()ABCD【解析】C例4、一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()ABCD【解析】C考点三: 系数K的几何意义例1、如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=和y=的图象交于A、B两点若点C是y轴上任意一点,连接AC、BC,则ABC的面积为()A3B4C5D10【解析】C例2、反比例函数y=(a0,a为常数)和y=在第一象
7、限内的图象如图所示,点M在y=的图象上,MCx轴于点C,交y=的图象于点A;MDy轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:SODB=SOCA; 四边形OAMB的面积不变;当点A是MC的中点时,则点B是MD的中点其中正确结论的个数是()A0B1C2D3【解析】由于A、B在同一反比例函数y=图象上,则ODB与OCA的面积相等,都为2=1,正确;由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;连接OM,点A是MC的中点,则OAM和OAC的面积相等,ODM的面积=OCM的面积=,ODB与OCA的面积相等,OBM与OAM的面积相等
8、,OBD和OBM面积相等,点B一定是MD的中点正确;故选:D例3、如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OABC,双曲线y=(x0)经过AC边的中点,若S梯形OACB=4,则双曲线y=的k值为()A5B4C3D2【解析】过AC的中点P作DEx轴交y轴于D,交BC于E,作PFx轴于F,如图,在PAD和PCE中,PADPCE(AAS),SPAD=SPCE,S梯形AOBC=S矩形BODE,S矩形DOFP=S矩形BODE,S矩形DOFP=S梯形AOBC=4=2,|k|=2,而k0,k=2故选:D考点四: 反比例函数与一次函数例1、如图,
9、直线y=x1与x轴交于点B,与双曲线y=(x0)交于点A,过点B作x轴的垂线,与双曲线y=交于点C,且AB=AC,则k的值为()A2B3C4D6【解析】C例2、如图,直线y=x+5与双曲线y=(x0)相交于A,B两点,与x轴相交于C点,BOC的面积是若将直线y=x+5向下平移1个单位,则所得直线与双曲线y=(x0)的交点有() A0个 B1个 C2个 D0个,或1个,或2个【解析】令直线y=x+5与y轴的交点为点D,过点B作BEx轴于点E,如图所示令直线y=x+5中y=0,则0=x+5,解得:x=5,即OC=5BOC的面积是,OCBE=5BE=,解得:BE=1结合题意可知点B的纵坐标为1,当y
10、=1时,有1=x+5,解得:x=4,点B的坐标为(4,1),k=41=4,即双曲线解析式为y=将直线y=x+5向下平移1个单位得到的直线的解析式为y=x+51=x+4,将y=x+4代入到y=中,得:x+4=,整理得:x24x+4=0,=(4)244=0,平移后的直线与双曲线只有一个交点故选B例3、如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sinAOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于()A60B80C30D40【解析】过点A作AMx轴于点M,如图所示设OA=a,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OA
11、sinAOB=a,OM=a,点A的坐标为(a,a)点A在反比例函数y=的图象上,aa=48,解得:a=10,或a=10(舍去)AM=8,OM=6,OB=OA=10四边形OACB是菱形,点F在边BC上,SAOF=S菱形OBCA=OBAM=40故选D例4、如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=的图象在第一限内的一个分支,点P是这条曲线的任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N为垂足)分别与直线AB相交于点E和F(1)求OEF的面积(a,b的代数式表示);(2)AOF与BOE是否
12、一定相似?如果一定相似,请证明;如果不一定相似,请说明理由;(3)当点P在曲线上移动时,OEF随之变动,指出在OEF的三个内角中,是否有大小始终保持不变的角?若有,请求出其大小;若没有,请说明理由解:(1)根据题意,易知:直线AB的解析式为y=x+1,点E的坐标是(a,1a),点F的坐标是(1b,b),当PM、PN与线段AB都相交时,如图1,SEOF=SAOBSAOESBOF=当PM、PN中有一条与AB相交,另一条与BA延长线或AB延长线相交时,如图2和图3,SEOF=SFOA+SAOE=1b+1(a1)=,SEOF=SFOB+SBOE=,即SEOF=;(2)AOF和BEO一定相似如图1,OA
13、=OB=1,OAF=EBO,BE=BAAE=,AF=BABF=,点P是函数图象上任意一点,即2ab=1,ab=1即,AFBE=OBOA,AOFBEO,对图2,图3同理可证,AOFBEO;(3)当点P在曲线上移动时,在OEF中,EOF一定等于45,由(2)知,AOFBEO,AFO=BOE,如图1,在BOF中,AFO=BOF+B,而BOE=BOF+EOF,EOF=B=45,对图2,图3同理可证,EOF=45P(Practice-Oriented)实战演练实战演练 课堂狙击1、当k0时,反比例函数y=和一次函数y=kx+2的图象大致是()A B C D【解析】C2、已知二次函数y=(xa)2b的图象
14、如图所示,则反比例函数y=与一次函数y=ax+b的图象可能是()ABCD【解析】B3、如图,点A、C为反比例函数y=图象上的点,过点A、C分别作ABx轴,CDx轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当AEC的面积为时,k的值为()A4 B6 C4 D6 【解析】C4、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A1k9 B2k34 C1k16 D4k16 【解析】C5、如图1,已知直线y=x+3与x轴交于点A,与
15、y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P试求PAD的面积的最大值;探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由【解析】(1)如图1,均是正整数新函数的两条性质:函数的最小值为0;函数图象的对称轴为直线x=3;由题意得A点坐标为(3,0)分两种情况:x3时,显
16、然y=x+3;当x3时,设其解析式为y=kx+b在直线y=x+3中,当x=4时,y=1,则点(4,1)关于x轴的对称点为(4,1)把(4,1),(3,0)代入y=kx+b,得,解得,y=x3综上所述,新函数的解析式为y=;(2)如图2,点C(1,a)在直线y=x+3上,a=1+3=4点C(1,4)在双曲线y=上,k=14=4,y=点D是线段AC上一动点(不包括端点),可设点D的坐标为(m,m+3),且3m1DPx轴,且点P在双曲线上,P(,m+3),PD=m,PAD的面积为S=(m)(m+3)=m2m+2=(m+)2+,a=0,当m=时,S有最大值,为,又31,PAD的面积的最大值为;在点D运
17、动的过程中,四边形PAEC不能为平行四边形理由如下:当点D为AC的中点时,其坐标为(1,2),此时P点的坐标为(2,2),E点的坐标为(5,2),DP=3,DE=4,EP与AC不能互相平分,四边形PAEC不能为平行四边形 课后反击1、在直角坐标系中,直线y1=2x2与坐标轴交于A、B两点,与双曲线y2=(x0)交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:SADB=SADC; 当0x3时,y1y2; 如图,当x=3时,EF=; 当x0时,y1随x的增大而增大,y2随x的增大而减小其中正确结论的个数是()A1B2C3D4【解析】C2、如图,在平面直角坐标系中,点A在第二象限内,
18、点B在x轴上,AOB=30,AB=BO,反比例函数y=(x0)的图象经过点A,若SABO=,则k的值为 解:过点A作ADx轴于点D,如图所示AOB=30,ADOD,=cotAOB=,AOB=30,AB=BO,AOB=BAO=30,ABD=60,=cotABD=,OB=ODBD,=,=,SABO=,SADO=|k|=,反比例函数图象在第二象限,k=3,故答案为:33、如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=x+6于A、B两点,若反比例函数y=(x0)的图象与ABC有公共点,则k的取值范围是()A2k9B2k8C2k5D5k8【解析】A4、如图,在平面直角坐标系中,反比例函数y=
19、(x0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC若四边形ODBE的面积为6,则k= 解:连接OB,如图所示:四边形OABC是矩形,OAD=OCE=DBE=90,OAB的面积=OBC的面积,D、E在反比例函数y=(x0)的图象上,OAD的面积=OCE的面积,OBD的面积=OBE的面积=四边形ODBE的面积=3,BE=2EC,OCE的面积=OBE的面积=,k=3;故答案为:35、如图1所示,已知y=(x0)图象上一点P,PAx轴于点A(a,0),点B坐标为(0,b)(b0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线
20、MN于点Q连接AQ,取AQ的中点为C(1)如图2,连接BP,求PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长【解析】解:(1)如图2,连接OPSPAB=SPAO=xy=6=3(2)如图1,四边形BQNC是菱形,BQ=BC=NQ,BQC=NQC,ABBQ,C是AQ的中点,BC=CQ=AQ,BQC=60,BAQ=30,在ABQ和ANQ中,ABQANQ(SAS),BAQ=NAQ=30,BAO=30,S菱形BQNC=2=CQBN,令CQ=2
21、t=BQ,则BN=2(2t)=2t,t=1BQ=2,在RtAQB中,BAQ=30,AB=BQ=2,BAO=30OA=AB=3,又P点在反比例函数y=的图象上,P点坐标为(3,2);(3)OB=1,OA=3,AB=,易得AOBDBA,BD=3,如图3,当点Q在线段BD上,ABBD,C为AQ的中点,BC=AQ,四边形BQNC是平行四边形,QN=BC,CN=BQ,CNBD,=,BQ=CN=BD=,AQ=2,C四边形BQNC=2+2;如图4,当点Q在射线BD的延长线上,ABBD,C为AQ的中点,BC=CQ=AQ,平行四边形BNQC是菱形,BN=CQ,BNCQ,BNDQAD=,BQ=3BD=9,AQ=2
22、,C四边形BNQC=2AQ=4直击中考1、【2009深圳】如图,反比例函数y=的图象与直线y=x的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D2【解析】A2、【2016深圳】如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将ABCO绕点A逆时针旋转得到ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x0)的图象上,则k的值为 【解析】过点D作DMx轴于点M,由题意可得:BAO=OAF,AO=AF,ABOC,则BAO=AOF=AFO=OAF,故AOF=60=DOM,OD=AD
23、OA=ABOA=62=4,MO=2,MD=2,D(2,2),k=2(2)=4故答案为:43、【2015深圳】如图,已知点A在反比例函数y=(x0)上,作RtABC,点D为斜边AC的中点,连DB并延长交y轴于点E若BCE的面积为8,则k= 【解析】BCE的面积为8,BCOE=16,点D为斜边AC的中点,BD=DC,DBC=DCB=EBO,又EOB=ABC,EOBABC,ABOB=BCOEk=ABBO=BCOE=16故答案为:164、【2014深圳】)如图,双曲线y=经过RtBOC斜边上的点A,且满足=,与BC交于点D,SBOD=21,求k= 【解析】过A作AEx轴于点ESOAE=SOCD,S四边形AECB=SBOD=21,AEBC,OAEOBC,=()2=,SOAE=4,则 k=8故答案是:8S(Summary-Embedded)归纳总结重点回顾1、 反比例函数的定义与表达式2、 反比例函数的图像与性质3、 系数K的几何意义4、 反比例函数与一次函数5、 反比例函数的综合应用名师点拨 掌握好反比例函数的定义与图像性质是解决本节问题的前提;另外系数K的几何意义、反比例函数与一次函数结合是考试重点,务必多加练习总结规律。 学霸经验 本节课我学到 我需要努力的地方是17