1 第四章 三角形第三节 全等三角形基础过关1. (2018 贵州三州联考 )下列各图中 a、 b、 c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是( )A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙2. (2018 成都) 如图,已知ABC DCB,添加以下条件,不能判
2019年中考数学冲刺专题三角形问题含解析Tag内容描述:
1、 1 第四章 三角形第三节 全等三角形基础过关1. (2018 贵州三州联考 )下列各图中 a、 b、 c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是( )A. 甲和乙 B. 乙和丙 C. 甲和丙 D. 只有丙2. (2018 成都) 如图,已知ABC DCB,添加以下条件,不能判定 ABCDCB的是( )A. AD B. ACBDBC C. ACDB D. ABDC3. (2018 西安高新一中模拟)如图,已知 OAOB ,点 C 在 OA 上,点 D 在 OB 上,OCOD,AD 与 BC 相交于点 E,那么图中全等的三角形共有( )A. 2 对 。
2、 决胜2021中考数学压轴题全揭秘精品 专题10 三角形问题 【考点1】三角形基础知识 【例1】1(2020湛江)如图,在中,平分,则的度数是( ) ABCD 【答案】C 【分析】 在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数 【详解】 在中, 平分 故选C 【点睛】 本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关。
3、专题专题 28 28 四边形中的三角形全等问题四边形中的三角形全等问题 1、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值; (3)如图 2,将图 1 中正方形 ABCD 改为矩形 ABCD,AB3,BC8,E 是线段 BC。
4、2019年中考数学总复习巅峰冲刺专题15讲 三角形综合问题【难点突破】着眼思路,方法点拨, 疑难突破;1、涉及三角形角形外角和定理;已知三角形角的数量关系求角度时,可以建立方程求解 2、涉及全等问题解题要领:探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;掌握并记忆一些基本构成图形中的等量关系;把握问题中的关键,通过关键条件,发现并添加辅助线 3、涉及到计算边的关系解题要领:线段的垂直平分线常常用于构造等腰三角形;在直角三角形中求边的长度,常常要用到勾股定理;。
5、 专题专题 18 18 等腰、等边三角形问题等腰、等边三角形问题 一、等腰三角形一、等腰三角形 1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶 角,底边和腰的夹角叫底角. 2.等腰三角形的性质 性质 1:等腰三角形的两个底角相等(简称“等边对等角”) 性质 2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”) 3.等腰。
6、2019年中考数学真题分类训练专题十:三角形一、选择题1(2019滨州)如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为A4B3C2D1【答案】B2(2019陕西)如图,在ABC中,B=30,C=45,AD平分BAC交BC于点D,DEAB,垂足为E若DE=1,则BC的长为A2+BCD3【答案】A3(2019衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动若BDE=75,则CDE的度数是A60B65C75D。
7、 一、单选题一、单选题 1如图,在ABC 中,AB=20cm,AC=12cm,点 P从点 B出发以每秒 3cm速度向点 A 运动,点 Q从点 A 同时出发以每秒 2cm速度向点 C运动,其中一个动点到达端点,另一个动点也随之停止,当APQ是以 PQ 为底的等腰三角形时,运动的时间是( )秒 A2.5 B3 C3.5 D4 【答案】D 【关键点拨】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定 的拔高难度,属于中档题 2已知等边ABC 中,在射线 BA上有一点 D,连接 CD,并以 CD为边向上作等边CDE,连接 BE和 AE. 试判断下列结论:AE=BD; AE与 AB 。
8、2019年中考数学真题分类训练专题十五:锐角三角形一、选择题1(2019广西)小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)A3.2米B3.9米C4.7米D5.4米【答案】C2(2019温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为A米B米C米D米【答案】B3(2019广州)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜。
9、专题16 全等三角形判定和性质问题专题知识回顾 1全等三角形:能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。2全等三角形的表示全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3全等三角形的性质: 全等三角形的对应角相等、对应边相等。 4三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边。
10、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 2121 函数中三角形存在问题函数中三角形存在问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、 等腰三角形、全等三角形及相似三角形的存在性常结合动点、函数与几何,考查分类讨论、画图及建等 式计算 主要思路为:由判定定理确定三角形所满足的特殊关系;分类讨论,画图;建等式,对结果验 证取舍对于目标三角形不确定、点的。
11、 2018-2019 学年初三数学专题复习 三角形一、单选题 1.如图,BC AC,BD AD,且 BC=BD,可说明三角形全等的方法是( )A. SAS B. AAS C. SSA D. HL2.一个三角形的三个内角的度数之比为 1:2 :3,这个三角形一定是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法判定3.以下列各组线段为边,能组成三角形的是( ) A. 1,2,3 B. 2,3,5 C. 4,6,8 。
12、专题17 等腰、等边三角形问题专题知识回顾 一、等腰三角形1. 定义:两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角.2.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”)3.等腰三角形的性质的作用性质1证明同一个三角形中的两角相等.是证明角相等的一个重要依据性质2用来证明线段相等,角相等,垂直关系等4.等腰三角形是轴对称图形等腰三角形底边上的高(顶。
13、专题18 解直角三角形问题专题知识回顾 一、勾股定理1勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2=c2。2勾股定理逆定理:如果三角形三边长a,b,c满足a2b2=c2。,那么这个三角形是直角三角形。 3.定理:经过证明被确认正确的命题叫做定理。 4.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5.直角三角形的性质:(1)直角三角形的两锐角互余;(2)直角三角形的两条直角边的平方和等于斜边的平方;(3)直角三角形中30角所对。
14、 专题专题 19 解直角三角形问题解直角三角形问题 一、勾股定理和勾股定理逆定理一、勾股定理和勾股定理逆定理 1.勾股定理:如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a2b2=c2。 2勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2b2=c2。 ,那么这个三角形是直角三角形。 二、直角三角形的判定及性质二、直角三角形的判定及性质 1.直角三角形的判定 (1)有一个角。
15、专题专题 22 22 三角形中位线定理应用问题三角形中位线定理应用问题 1 1三角形中位线的定义:三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。 2 2三角形中位线定理:三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 3.3.对三角形中位线的深刻理解对三角形中位线的深刻理解 (1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的。
16、 专题专题 20 20 相似三角形问题相似三角形问题 一、比例一、比例 1成比例线段(简称比例线段):对于四条线段 a、b、c、d,如果其中两条线段的长度的比与另两条线段的 长度的比相等,即 d c b a (或 a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。如果作为 比例内项的是两条相同的线段,即 c b b a 或 a:b=b:c,那么线段 b 叫做线段 a,c 的比例中项。
17、 20192019 年中考数学总复习巅峰冲刺年中考数学总复习巅峰冲刺 专题专题 1515 讲讲 三角形综合问题三角形综合问题 【难点突破】着眼思路,方法点拨【难点突破】着眼思路,方法点拨, 疑难突破;疑难突破; 1、涉及三角形角形外角和定理;已知三角形角的数量关系求角度时,可以建立方程求解 2、涉及全等问题解题要领:探求两个三角形全等的条件:SSS,SAS,ASA,AAS 及 HL,注意挖掘问题 中的隐含等量关系, 防止误用“SSA”; 掌握并记忆一些基本构成图形中的等量关系; 把握问题中的关键, 通过关键条件,发现并添加辅助线 3、涉及到计算。
18、 三角形、四边形实践探究1.如图,在ABC 中,AB= AC,点 D 从点 B 出发沿射线 BA 移动,同时,点 E 从点 C 出发沿线段 AC 的延长线移动,已知点 D、E 移动的速度相同,DE 与直线 BC 相交于点 F (1)当点 D 在线段 AB 上时,过点 D 作 AC 的平行线交 BC 于点 G,连接 CD、GE ,判定四边形 CDG E 的形状,并证明你的结论; (2)过点 D 作直线 BC 的垂线,垂足为 M,当点 D、E 在移动的过程中,线段BM、MF、CF 有何数量关系?请直接写出你的结论解:(1)四边形 CDGE 是平行四边形理由:如解图,D、E 移动的速度相同, BD=CE, DGAE,DGB=ACB, AB=AC, B=ACB, B=DGB,BD=。
19、 1 探究相似三角形存在性问题1如图,已知抛物线 yax 2bx 4 与 x 轴交于点 A(1,0)、B(8,0) ,与 y 轴交于点 C.(1)求抛物线的解析式;(2)点 P 是线段 BC 上一动点,过点 P 作 x 轴的垂线,交抛物线于点 M,交 x 轴于点 N,过点 M 作MHBC 于点 H,求PMH 周长的最大值;(3)在(2)的条件下,是否存在点 P,使得以点 P、C、M 为顶点的三角形与OBC 相似?若存在,求出点 P 的坐标,若不存在,请说明理由第 1 题图解:(1)将点 A(1,0),B(8 ,0) 分别代入 yax 2bx4 中,得 ,a b 4 064a 8b 4 0)解得 ,a 12b 72)抛物线的解析式为 y x2 x4;12 72(。
20、三角形问题一、单选题1如图,在ABC 中,AB=20cm,AC=12cm,点 P 从 点 B 出发以每秒 3cm 速度向点 A 运动,点 Q 从点 A 同时出发以每秒 2cm 速度向点 C 运动,其中一个动点到达端点,另一个动点也随之停止,当APQ 是以 PQ 为底的等腰三角形时,运动的时间是 ( )秒A2.5 B3 C3.5 D42已知等边ABC 中,在射线 BA 上有一点 D,连接 CD,并以 CD 为边向上作等边CDE,连接 BE 和 AE.试判断下列结论: AE=BD ; AE 与 AB 所夹锐夹角为 60;当 D 在线段AB 或 BA 延长线上时,总有 BDE-AED=2 BDC;BCD=90时,CE 2+AD2=AC2+DE2 .正确的序号有( )A B。