4.4单位圆的对称性与诱导公式(一) 一、选择题 1cos 600的值为() A. B. C D 答案D 解析cos 600cos(360240)cos 240 cos(18060)cos 60. 2sin(390)的值为() A. B C. D 答案D 解析sin(390)sin(36030)si
2.4.1圆的标准方程 课时对点练含答案Tag内容描述:
1、4.4单位圆的对称性与诱导公式(一)一、选择题1cos 600的值为()A. B. C D答案D解析cos 600cos(360240)cos 240cos(18060)cos 60.2sin(390)的值为()A. B C. D答案D解析sin(390)sin(36030)sin(30)sin 30.3下列三角函数中,与sin数值相同的是()sin;cos;sin;cos;sin(nZ)A BC D答案C4sin(2)cos(42)化简的结果为()Asin 2cos 2 B1C2sin 2 D2sin 2答案A解析原式sin 2cos 。
2、2.52.5 直线与圆圆与圆的位置关系直线与圆圆与圆的位置关系 2 25.15.1 直线与圆的位置关系直线与圆的位置关系 第第 1 1 课时课时 直线与圆的位置关系直线与圆的位置关系 课时课时对点对点练练 1直线 3x4y120 与圆x12。
3、第2课时圆的一般方程一、选择题1.若直线3xya0经过圆x2y24x8y0的圆心,则实数a的值为()A.2 B.2 C.4 D.4答案B解析将圆的一般方程x2y24x8y0化为标准方程,得(x2)2(y4)220,其圆心坐标为(2,4).因为直线3xya0过圆心,所以3(2)4a0,所以a2.2.方程2x22y24x8y100表示的图形是()A.一个点 B.一个圆C.一条直线 D.不存在答案A解析方程2x22y24x8y100,可化为x2y22x4y50,即(x1)2(y2)20,故方程表示点(1,2).3.当a为任意实数时,直线(a1)xya0恒过定点C,则以C为圆心,为半径的圆的方程为()A.x2y22x2y30B.x2y22x2y30C.x2y22x2y30D.x2y22x2y30答案C解析直。
4、2.2.32.2.3 直线的一般式方程直线的一般式方程 课时课时对点对点练练 1过点2,1,斜率 k2 的直线方程为 Ax12y2 B2xy10 Cy22x1 D2xy50 答案 D 解析 根据直线方程的点斜式可得,y12x2,即 2xy5。
5、2 2. .2.22.2 直线的两点式方程直线的两点式方程 课时课时对点对点练练 1过两点2,1和1,4的直线方程为 Ayx3 Byx1 Cyx2 Dyx2 答案 A 解析 代入两点式得直线方程为y141x212, 整理得 yx3. 2已知。
6、2.22.2 直线的方程直线的方程 2 22.12.1 直线的点斜式方程直线的点斜式方程 课时课时对点对点练练 1已知一直线经过点 A3,2,且与 x 轴平行,则该直线的方程为 Ax3 Bx2 Cy3 Dy2 答案 D 解析 直线与 x 轴。
7、2.5.22.5.2 圆与圆的位置关系圆与圆的位置关系 课时课时对点对点练练 1圆 C1:x2y24x8y50 与圆 C2:x2y24x4y10 的位置关系为 A相交 B外切 C内切 D外离 答案 C 解析 由已知,得 C12,4,r15,。
8、2.2.3圆与圆的位置关系一、选择题1.已知两圆分别为圆C1:x2y281和圆C2:x2y26x8y90,则两圆的位置关系是()A.相离 B.相交 C.内切 D.外切答案C解析圆C1的圆心为C1(0,0),半径长r19;圆C2的方程化为标准形式为(x3)2(y4)216,圆心为C2(3,4),半径长r24,所以C1C25.因为r1r25,所以C1C2r1r2,所以圆C1和圆C2内切.2.已知圆C1:(xm)2(y2)29与圆C2:(x1)2(ym)24外切,则m的值为()A.2 B.5C.2或5 D.不确定答案C解析圆C1的圆心(m,2),圆C2的圆心(1,m),则C1C232,得m2或5.3.圆(x2)2y24与圆x2(y2)24的公共弦所对的圆心角是()A.60 B.45 C.120 D.90答。
9、第第 2 2 课时课时 直线与圆的方程的实际应用直线与圆的方程的实际应用 课时课时对点对点练练 1如图,圆弧形拱桥的跨度AB12 米,拱高CD4 米,则拱桥的直径为 A15 米 B13 米 C9 米 D6.5 米 答案 B 解析 如图,设圆。
10、2.4向量的应用2.4.1向量在几何中的应用一、选择题1.已知点A(2,3),B(19,4),C(1,6),则ABC是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形答案C解析(19,4)(2,3)(21,7),(1,6)(2,3)(1,3),21210,.又|,ABC为直角三角形.2.在四边形ABCD中,若(1,2),(4,2),则该四边形的面积为()A. B.2 C.5 D.10答案C解析0,ACBD.四边形ABCD的面积S|25.3.已知点P是ABC所在平面内一点,若,其中R,则点P一定在()A.ABC的内部 B.AC边所在的直线上C.AB边所在的直线上 D.BC边所在的直线上答案B解析,P,A,C三点共线,点P一定在AC边所在的。
11、2.4.22.4.2 圆的一般方程圆的一般方程 课时课时对点对点练练 1多选若 a2,0,1,23,方程 x2y22ax2ay2a2a10 表示圆,则 a 的值可以为 A2 B0 C1 D.23 答案 ABD 解析 根据题意,若方程表示圆,。
12、2 抛物线抛物线 2.1 抛物线及其标准方程抛物线及其标准方程 一、选择题 1.抛物线 y2x2的焦点到准线的距离是( ) A.2 B.1 C.1 4 D. 1 2 考点 抛物线的定义 题点 抛物线定义的直接应用 答案 C 解析 抛物线 y2x2可化为 x21 2y, 焦点到准线的距离为1 4. 2.若动点 P 与定点 F(1,1)和直线 l:3xy40 的距离相等,则动点 P 的轨迹是( ) A.椭圆 B.双曲线 C.抛物线 D.直线 考点 抛物线的定义 题点 抛物线定义的直接应用 答案 D 解析 方法一 设动点 P 的坐标为(x,y). 则 x12y12|3xy4| 10 . 整理,得 x29y24x12y6xy40, 即(x3y2)20,x3y20. 所以动点。
13、习题课直线与方程一、选择题1.和直线3x4y50关于x轴对称的直线方程为()A.3x4y50 B.3x4y50C.3x4y50 D.3x4y50答案A解析设所求直线上任意一点(x,y),则此点关于x轴对称的点的坐标为(x,y),因为点(x,y)在直线3x4y50上,所以3x4y50即为所求直线.2.已知A(2,4)关于直线xy10对称的点为B,则B满足的直线方程为()A.xy0 B.xy20C.xy50 D.xy0答案D解析设B(a,b),A(2,4)关于直线xy10的对称点为B,解得即B(3,3),分别代入各选项,只有D符合.3.直线2xy30关于直线xy20对称的直线方程是()A.x2y30 B.x2y30C.x2y10 D.x2y10答案A解析因为直线xy20的斜率为1,。
14、2.2圆与方程2.2.1圆的方程第1课时圆的标准方程一、选择题1.圆(x1)2(y2)24的圆心与半径分别为()A.(1,2),2 B.(1,2),2C.(1,2),4 D.(1,2),4答案A2.以下各点在圆(x4)2y24内的是()A.(0,2) B.(2,0) C.(3,1) D.(1,3)答案C解析根据题意,依次分析选项:对于(0,2),有(04)222204,点在圆外,不符合题意;对于(2,0),有(24)2024,点在圆上,不符合题意;对于(3,1),有(34)21224,点在圆外,不符合题意.3.方程(x1)0所表示的曲线是()A.一个圆 B.两个点C.一个点和一个圆 D.一条直线和一个圆答案D解析(x1)0可化为x10或x2y23,方程(x1)0表示一条直线。
15、 1 椭椭 圆圆 1.1 椭圆及其标准方程椭圆及其标准方程 一、选择题 1.平面内,F1,F2是两个定点,“动点 M 满足|MF1 |MF2 |为常数”是“M 的轨迹是椭圆” 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 与椭圆有关的轨迹方程 题点 椭圆的定义 答案 B 解析 当|MF1 |MF2 |F1F2 |时,M 的轨迹才是椭圆. 2.已知椭圆x 2 25 y2 m21(m0)的左焦点为 F1(4,0),则 m 的值为( ) A.9 B.4 C.3 D.2 考点 椭圆的标准方程 题点 已知椭圆焦点位置、焦距求参数 答案 C 解析 由题意可知 25m216,解得 m3(舍去负值). 3.已知。
16、2.3双曲线2.3.1双曲线的标准方程一、选择题1已知双曲线方程为x22y21,则它的右焦点坐标为()A. B. C. D(,0)答案B解析将双曲线方程化为标准方程为x21,a21,b2,c2a2b2,c,故右焦点坐标为.2已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若PF1PF2b,且双曲线的焦距为2,则该双曲线的方程为()A.y21 B.1Cx21 D.1答案C解析由题意得解得则该双曲线的方程为x21.3已知双曲线1,焦点在y轴上,若焦距为4,则a等于()A. B5 C7 D.答案D解析根据题意可知,双曲线的标准方程为1.由其焦距为4,得c2,则有c22a3a4,解得a.4已知双曲。
17、2.2椭圆22.1椭圆的标准方程一、选择题1椭圆y21上一点P到一个焦点的距离为2,则点P到另一个焦点的距离为()A8 B10 C2 D6答案A解析由椭圆定义知,点P到另一个焦点的距离是1028.2椭圆1的焦距等于2,则m的值为()A14 B16C14或16 D15答案C解析由m151得m16或14.3已知椭圆1(ab0)的右焦点为F(3,0),点(0,3)在椭圆上,则椭圆的标准方程为()A.1 B.1C.1 D.1答案D解析由题意可得解得故椭圆的标准方程为1.4如果方程1表示焦点在x轴上的椭圆,则实数a的取值范围是()A(,3) B(6,2)(3,)C(6,2) D(3,)答案B解析由题意知解得a3或6a2.5已知椭圆1上有一点P,F。
18、2.42.4 圆的方程圆的方程 2.4.12.4.1 圆的标准方程圆的标准方程 1圆心为3,1,半径为 5 的圆的标准方程是 Ax32y125 Bx32y1225 Cx32y125 Dx32y1225 答案 D 2圆x32y2213 的周长。
19、2.4抛物线2.4.1抛物线的标准方程一、选择题1抛物线y2x2的焦点到准线的距离是()A2 B1 C. D.答案C解析抛物线y2x2化为x2y,焦点到准线的距离为.2已知抛物线y22px(p0)的准线经过点(1,1),则该抛物线焦点坐标为()A(1,0) B(1,0) C(0,1) D(0,1)答案B解析抛物线y22px(p0)的准线方程为x,由题设知1,即p2,故焦点坐标为(1,0)故选B.3已知抛物线y22px(p0)的准线与圆(x3)2y216相切,则p的值为()A2 B. C1 D2答案A解析抛物线y22px的准线方程为x,它与圆相切,所以必有34,所以p2.4一动圆过点(0,1)且与定直线l相切,圆心在抛物线x24y上,则l的方程为()Ax。
20、2.42.4 圆的方程圆的方程 2 2. .4.14.1 圆的标准方程圆的标准方程 课时课时对点对点练练 1圆x12y 321 的圆心坐标是 A1, 3 B1, 3 C1, 3 D1, 3 答案 C 解析 由圆的标准方程x12y 321,得。