73.2圆的一般方程 学习目标 1正确理解圆的方程的形式及特点,会由一般式求圆心和半径2会在不同条件下求圆的一般式方程 知识链接 1圆的标准方程为(xa)2(yb)2r2,它的圆心坐标为(a,b),半径为r 2点与圆的位置关系有点在圆外、点在圆上、点在圆内,可以利用代数法与几何法进行判断 预习导引
2.3.1 圆的标准方程 学案含答案Tag内容描述:
1、73.2圆的一般方程学习目标 1正确理解圆的方程的形式及特点,会由一般式求圆心和半径2会在不同条件下求圆的一般式方程知识链接1圆的标准方程为(xa)2(yb)2r2,它的圆心坐标为(a,b),半径为r2点与圆的位置关系有点在圆外、点在圆上、点在圆内,可以利用代数法与几何法进行判断预习导引1圆的一般方程的定义(1)当D2E24F0时,方程x2y2DxEyF0叫作圆的一般方程,其圆心为,半径为(2)当D2E24F0时,方程x2y2DxEyF0表示点(3)当D2E24F0)则其位置关系如下表:位置关系代数关系点M在圆外xyDx0Ey0F0点M在圆上xyDx0Ey0F0点M在圆内xyDx0Ey0F<。
2、习题课圆的方程的应用学习目标1.体会数形结合思想在求解与圆有关的最值问题中的应用.2.掌握直线与圆的方程的实际应用.3.了解圆系的方程.知识点一与圆有关的最值问题1.与圆上的点(x,y)有关的最值常见的有以下几种类型:(1)形如u形式的最值问题,可转化为过点(x,y)和(a,b)的动直线斜率的最值问题.(2)形如laxby(b0)形式的最值问题,可转化为动直线yx截距的最值问题.(3)形如m(xa)2(yb)2形式的最值问题,可转化为动点(x,y)到定点(a,b)的距离的平方的最值问题.2.与圆的几何性质有关的最值(1)记O为圆心,圆的半径为r,圆外一点A到圆上距离的。
3、 3 向量的坐标表示和空间向量基本定理向量的坐标表示和空间向量基本定理 3.1 空间向量的标准正交分解与坐标表示空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理空间向量基本定理 学习目标 1.了解空间向量基本定理.2.了解基底、标准正交基的概念.3.掌握空间向量的坐标 表示,能在适当的坐标系中写出向量的坐标. 知识点一 空间向量的坐标表示 空间向量的正交分解及其坐标表示 标准正交基 有公共起点 O 的三个两两垂直的单位向量,记作 i,j,k 空间直角坐标系 以 i,j,k 的公共起点 O 为原点,分别以 i,j,k 的方向为 x 轴,y 轴。
4、2.4抛物线2.4.1抛物线的标准方程学习目标1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导过程.3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程的问题知识点抛物线的标准方程思考1在抛物线方程中p有何意义?抛物线的开口方向由什么决定?答案p是抛物线的焦点到准线的距离,抛物线方程中一次项决定开口方向思考2已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向?答案一次项变量为x(或y),则焦点在x轴(或y轴)上若系数为正,则焦点在正半轴上;若系数为负,则焦点在负半轴上焦点确定,开。
5、2.2椭圆22.1椭圆的标准方程学习目标1.掌握椭圆的标准方程.2.会求椭圆的标准方程.3.能用标准方程判断曲线是不是椭圆知识点一椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,这两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距知识点二椭圆的标准方程思考在椭圆方程中,a,b以及参数c有什么几何意义,它们满足什么关系?答案在椭圆方程中,a表示椭圆上的点M到两焦点间的距离之和的一半,可借助图形帮助记忆,a,b,c(都是正数)恰构成一个直角三角形的三条边,a是斜边,c是焦距的一半,叫。
6、2.42.4 圆的方程圆的方程 2 2. .4.14.1 圆的标准方程圆的标准方程 课时课时对点对点练练 1圆x12y 321 的圆心坐标是 A1, 3 B1, 3 C1, 3 D1, 3 答案 C 解析 由圆的标准方程x12y 321,得。
7、2圆与圆的方程2.1圆的标准方程基础过关1.点(,)与圆x2y2的位置关系是()A.在圆上 B.在圆内C.在圆外 D.不能确定解析因为()2()21,故点(,)在圆外.答案C2.已知一圆的圆心为点A(2,3),一条直径的端点分别在x轴和y轴上,则圆的方程是()A.(x2)2(y3)213 B.(x2)2(y3)213C.(x2)2(y3)252 D.(x2)2(y3)252解析如图,结合圆的性质可知原点在圆上,圆的半径r.故所求圆的方程为(x2)2(y3)213.答案B3.若圆C与圆(x2)2(y1)21关于原点对称,则圆C的方程是()A.(x2)2(y1)21B.(x2)2(y1)21C.(x1)2(y2)21D.(x1)2(y2)21解析已知圆的圆心为(2,1),关于原点的对称点。
8、2.42.4 圆的方程圆的方程 2.4.12.4.1 圆的标准方程圆的标准方程 1圆心为3,1,半径为 5 的圆的标准方程是 Ax32y125 Bx32y1225 Cx32y125 Dx32y1225 答案 D 2圆x32y2213 的周长。
9、2.4 圆的方程圆的方程 2.4.1 圆的标准方程圆的标准方程 一选择题 1.圆x12y 321 的圆心坐标是 A.1, 3 B.1, 3 C.1, 3 D.1, 3 答案 C 解析 由圆的标准方程x12y 321,得圆心坐标为1, 3. 。
10、73圆与方程73.1圆的标准方程基础过关1圆心为(1,2),半径为3的圆的方程是()A(x1)2(y2)29 B(x1)2(y2)23C(x1)2(y2)23 D(x1)2(y2)29答案D解析由题意可知,圆的方程为(x1)2(y2)29,故选D.2圆心为(0,4),且过点(3,0)的圆的方程为()Ax2(y4)225 Bx2(y4)225C(x4)2y225 D(x4)2y225答案A解析由题意,圆的半径r5,则圆的方程为x2(y4)225.3与圆(x3)2(y2)24关于直线x1对称的圆的方程为()A(x5)2(y2)24B(x3)2(y2)24C(x5)2(y2)24D(x3)2y24答案A解析已知圆的圆心(3,2)关于直线x1的对称点为(5,2),所求圆的方程为(x5)2(y2)24.4若点(。
11、2圆与圆的方程2.1圆的标准方程一、选择题1.圆(x1)2(y2)24的圆心与半径分别为()A.(1,2),2 B.(1,2),2C.(1,2),4 D.(1,2),4考点圆的标准方程题点由圆的标准方程求圆心和半径答案A2.圆心为(3,1),半径为5的圆的标准方程是()A.(x3)2(y1)25B.(x3)2(y1)225C.(x3)2(y1)25D.(x3)2(y1)225答案D3.方程(x1)0所表示的曲线是()A.一个圆 B.两个点C.一个点和一个圆 D.一条直线和一个圆考点与圆有关的轨迹问题题点有关点的轨迹的其他问题答案D解析(x1)0可化为,x10或x2y23,方程(x1)0表示一条直线和一个圆.4.若圆C的圆心坐标为(0,0),且圆C经过点M(3,4。
12、2.3双曲线2.3.1双曲线的标准方程一、选择题1已知双曲线方程为x22y21,则它的右焦点坐标为()A. B. C. D(,0)答案B解析将双曲线方程化为标准方程为x21,a21,b2,c2a2b2,c,故右焦点坐标为.2已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若PF1PF2b,且双曲线的焦距为2,则该双曲线的方程为()A.y21 B.1Cx21 D.1答案C解析由题意得解得则该双曲线的方程为x21.3已知双曲线1,焦点在y轴上,若焦距为4,则a等于()A. B5 C7 D.答案D解析根据题意可知,双曲线的标准方程为1.由其焦距为4,得c2,则有c22a3a4,解得a.4已知双曲。
13、2.2圆与方程2.2.1圆的方程第1课时圆的标准方程学习目标1.掌握圆的定义及标准方程.2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程.知识点一圆的标准方程1.方程(xa)2(yb)2r2(r0)叫做以点(a,b)为圆心,r为半径的圆的标准方程.2.以原点为圆心,r为半径的圆的标准方程为x2y2r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(xa)2(yb)2r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上CMr(x0a)2(y0b)2r2点M在圆外CMr(x0a)2(y0b)2r2点M在圆内CMr(x0a)2(y0b)2r2一、求圆的标准方程例1求经过点P(1,1)和坐标原。
14、2.4 圆的方程圆的方程 2.4.1 圆的标准方程圆的标准方程 课标要求 素养要求 1.回顾确定圆的几何要素,在平面直角 坐标系中,探索并掌握圆的标准方程. 2.会根据已知条件求圆的标准方程. 通过探索圆的标准方程并运用方程解决 问题,培养。
15、2圆与圆的方程2.1圆的标准方程学习目标1.掌握圆的定义及标准方程.2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程.知识点一圆的标准方程1.圆的几何特征是圆上任一点到圆心的距离等于定长,这个定长称为半径.2.圆的标准方程:圆心为C(a,b),半径为r的圆的标准方程是(xa)2(yb)2r2.当ab0时,方程为x2y2r2,表示以坐标原点为圆心,r为半径的圆.知识点二点与圆的位置关系点M(x0,y0)与圆C:(xa)2(yb)2r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上|CM|r(x0a)2(y0b)2r2点M在圆外|CM|r(x0a)2(y0b)2r2点M。
16、73圆与方程73.1圆的标准方程学习目标 1会用定义推导圆的标准方程;掌握圆的标准方程的特点2会根据已知条件求圆的标准方程3能准确判断点与圆的位置关系知识链接1平面内,到定点的距离等于定长的点的集合叫圆2确定一个圆的基本要素是圆心和半径3平面上两点A(x1,y1),B(x2,y2)间的距离公式|AB|预习导引1圆的定义圆是在平面上到一个固定点的距离等于一个固定长度的所有的点组成的集合,这个固定的点就是圆心这个固定的长度就是半径2定理4:圆心为点(a,b)、半径为r的圆的方程为(xa)2(yb)2r2,称之为圆的标准方程3圆心在原点(0,0),半径为r。
17、2.3双曲线2.3.1双曲线的标准方程学习目标1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题知识点一双曲线的定义把平面内与两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距知识点二双曲线的标准方程思考如图,类比椭圆中a,b,c的意义,你能在y轴上找一点B,使OBb吗?答案以双曲线与x轴的交点A为圆心,以线段OF2为半径画圆交y轴于点B,此时OBb.梳理焦点在x。
18、2.3圆的方程2.3.1圆的标准方程基础过关1.圆心为(1,2),半径为3的圆的方程是()A.(x1)2(y2)29B.(x1)2(y2)23C.(x1)2(y2)23D.(x1)2(y2)29答案D2.已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()A.xy20B.xy20C.xy30D.xy30答案D解析圆x2(y3)24的圆心为点(0,3),又因为直线l与直线xy10垂直,所以直线l的斜率k1.由点斜式得直线l:y3x0,化简得xy30.3.与圆(x3)2(y2)24关于直线x1对称的圆的方程为()A.(x5)2(y2)24B.(x3)2(y2)24C.(x5)2(y2)24D.(x3)2y24答案A解析已知圆的圆心(3,2)关于直线x1的对称点为(5,2),所求圆的方程为(x5)2。
19、2.3圆的方程23.1圆的标准方程一、选择题1圆(x1)2(y2)24的圆心与半径分别为()A(1,2),2 B(1,2),2C(1,2),4 D(1,2),4考点圆的标准方程题点由圆的标准方程求圆心和半径答案A2圆心为(3,1),半径为5的圆的标准方程是()A(x3)2(y1)25B(x3)2(y1)225C(x3)2(y1)25D(x3)2(y1)225考点题点答案D3方程(x1)0所表示的曲线是()A一个圆 B两个点C一个点和一个圆 D一条直线和一个圆考点与圆有关的轨迹问题题点有关点的轨迹的其他问题答案D解析(x1)0可化为,x10或x2y23,方程(x1)0表示一条直线和一个圆4若圆C的圆心坐标为(0,0),且圆C经过点M(3,4),则圆C的。
20、2.3圆的方程23.1圆的标准方程学习目标1.掌握圆的定义及标准方程.2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标准方程知识点一圆的标准方程1方程(xa)2(yb)2r2称为以点C(a,b)为圆心,r为半径的圆的方程,叫做圆的标准方程2以原点为圆心,r为半径的圆的标准方程为x2y2r2.知识点二点与圆的位置关系点M(x0,y0)与圆C:(xa)2(yb)2r2的位置关系及判断方法位置关系利用距离判断利用方程判断点M在圆上|CM|r(x0a)2(y0b)2r2点M在圆外|CM|r(x0a)2(y0b)2r2点M在圆内|CM|r(x0a)2(y0b)2r21方程(xa)2(yb)2m2一定表示圆()2确定一个圆的几何。