,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两
1.1一元二次方程ppt课件Tag内容描述:
1、,1.3 一元二次方程的根与系数的关系,南京第二十九中致远初级中学 张莹莹,苏科数学,观察下表,你能发现下列一元二次方程的根 与系数有什么关系?,一、问题情境,【问题1】,两根的积与 常数项相等,两根的和与 一次项系数 互为相反数,苏科数学,一、问题情境,【问题2】填写下表:,这些方程的两根的和、两根的积与系数有什么关系?,苏科数学,二、数学活动,你能解释刚才的发现吗?,则,一元二次方程 ax2bxc0 (a0),如果b24ac0,它的两个根分别是x1、x2,活动1 用公式验证,苏科数学,二、数学活动,苏科数学,二、数学活动,苏科数学,如果一元二次方。
2、2.1 2.1 一元二次方程一元二次方程 第第2 2章章 一元二次方程一元二次方程 1 1、什么叫方程?什么叫方程的解?我们学了哪些、什么叫方程?什么叫方程的解?我们学了哪些 方程?方程? 2 2、什么是一元一次方程?它的一般形式是怎样的?、什么是一元一次方程?它的一般形式是怎样的? 3 3、我们知道了利用一元一次方程可以解决生活中、我们知道了利用一元一次方程可以解决生活中 的一些实际问题,你。
3、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.1 一元二次方程,课前回顾,一元一次方程,未知量,未知量的最高次幂,一个未知量,未知量的最高次幂是1,提示,判断下列式子是否是一元一次方程:,情境引入,把面积为4的一张纸分割成如图的正方形和长方形两部分,求正方形的边长。,设未知数,设正方形的边长为x.,探究1,正方形的面积为_。,长方形的面积为_。,分析等量关系,探究1,相加,+,=,探究2,某放射性元素经过2天质量衰变为原来的 ,问:平均每天的衰减率为多少?,设未知数,设平均每天的衰减率为x。,探究2,一天衰减为_。
4、,1.4 用一元二次方程解决问题(3),南京第二十九中致远初级中学 张莹莹,苏科数学,一、问题情境,如图,在矩形ABCD中,AB6cm,BC3cm.点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s的速度移动.如果点P、Q同时出发,用t(s)表示移动的时间(0t3).那么,当t为何值时,QAP的面积等于2cm2?,苏科数学,二、数学活动,活动1,如图,某海关缉私艇在C处发现在正北方向30km的A处有一艘可疑船只,并测得它正以60km/h的速度向正东方向航行缉私艇随即以75km/h的速度前往拦截,在B处将可疑船只拦截缉私艇从C处到B处需航行多长时间。
5、,1.4 用一元二次方程解决问题(1),南京第二十九中致远初级中学 张莹莹,苏科数学,一、问题情境,一块正方形铁皮的4个角各剪去一个边长为4cm的小正方形,做成一个无盖的铁盒.已知铁盒的容积是400cm3,求原铁皮的边长.,问题1. 如何设未知数?如何找出表达实际 问题的相等关系?,问题2. 你是如何解这个方程的?方程的解都符合题意吗?,问题3. 用方程解决问题的一般步骤是什么?,苏科数学,二、数学活动,活动1,用一根长22cm的铁丝: (1) 能否围成面积是30cm2的矩形? (2) 能否围成面积是32cm2的矩形?,问题1. 如何设未知数?如何找出表达实际问题。
6、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(2),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 。
7、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(1),1.经历用图象法求一元二次方程的近似解的过程,获得用图象法求方程近似解的经验与方法,体会数形结合的重要数学思想。2.会用二次函数的图象解决有关方程与不等式问题。3.掌握和理解二次函数有关代数式符号的确定。,一、学习目标,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2。
8、21 认识一元二次方程认识一元二次方程 第第 1 课时课时 一元二次方程一元二次方程 1了解一元二次方程的概念;(重点) 2掌握一元二次方程的一般形式 ax2bxc0(a,b,c 为常数,a0),能分清二次项、一次 项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点) 3能根据具体问题的数量关系,建立方程的模型(难点) 一、情景导入 一个面积为 120m2。
9、26 应用一元二次方程应用一元二次方程 第第 1 课时课时 几何问题及数字问题与一元二次方程几何问题及数字问题与一元二次方程 1掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果 的合理性;(重点、难点) 2理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提 出问题、分析问题,并能运用所学的知识解决问题 一、情景导入 要设计一本书的封面,。
10、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。
11、,苏科数学,5.4 二次函数与一元二次方程(2),忆一忆,函数yx22x3的图像如图所示,你能看出方程x22x30的解吗?,函数yx22x1的图像如图所示,你能看出方程x22x10的解吗?,想一想,利用计算器进行探索,x 0.4,缩小它的范围,x 0.41,x 0.414,继续缩小它的范围,算一算,你能用同样的方法求方程的另一个根吗?试试看!,做一做,我们也可以用取中间值逼近的方法去求它的近似根,2x 3,2 x 2.5,2.25 x 2.5,2 x 2.5,继续逼近,2.375 x2.5,2.375 x2.4375,x2.4,继续逼近.,2,3,+,2.5,+,2.25,2.375,2x3,2x2.5,2.25x2.5,2.375x2.5,用线段表示逼近的过程,_,_,_,2.43。
12、,苏科数学,1.2 一元二次方程的解法(6),二十九中致远 王玉佳,1.2 一元二次方程的解法(6),【问题情境】,如何解方程 x(x1)0,既可以用配方法解,也可以用公式法来解.,解法3: x(x 1)0, 此时x和x 1两个因式中必有一个为0,即x0或x 10, x10,x21,【概念】,1.2 一元二次方程的解法(6),这种解一元二次方程的方法叫做因式分解法,如果一个一元二次方程的一边为0 ,另一边能 分解成两个一次因式的乘积 ,那么这样的一元 二次方程就可用因式分解法来求解,解法3: x(x 1)0, 此时x和x 1两个因式中必有一个为0,即x0或x 10, x1 0,x2 1.,1.2 一。
13、,苏科数学,1.2 一元二次方程的解法(3),二十九中致远 王玉佳,1.2 一元二次方程的解法(3),九年级(上册),初中数学,1.2 一元二次方程的解法(3),【问题情境】,用配方法解下列方程:,(1) x26x160;(2) x23x20,1.2 一元二次方程的解法(3),【例题精讲】,例4 解方程2x25x20.,解:两边都除以2,得,移项,得,配方,得,开方,得, , ,1.2 一元二次方程的解法(3),【例题精讲】,例5 解方程3x24x10,解:两边都除以3,得,移项,得,配方,得,开方,得, ,1.2 一元二次方程的解法(3),【总结反思】,用配方法解二次项系数不为1的一元二次方程的一般。
14、,苏科数学,1.2 一元二次方程的解法(5),二十九中致远 王玉佳,1.2 一元二次方程的解法(5),【回顾复习】,用公式法解一元二次方程的一般步骤:,2求出b2 4ac 的值,,1把方程化成一般形式,并写出a、b、c 的值.,4写出方程的解:x1、x2,特别注意:当 b2 4ac0 时没有实数根,3代入求根公式: ,1.2 一元二次方程的解法(5),【例题精讲】,(1) x2x10;(2) ;(3) 2x22x10,例7 解下列方程:,1.2 一元二次方程的解法(5),【总结反思】,当b24ac 0 时,方程没有实数根.,当b24ac 0时,方程有两个不相等的实数根;,当b24ac 0 时,方程有两个相等的实数。
15、,苏科数学,1.2 一元二次方程的解法(1),二十九中致远 王玉佳,1.2 一元二次方程的解法(1),【问题情境】,如何解方程 x22 呢?,根据平方根的意义,x是2的平方根,即 x .,此一元二次方程的根为 x1 , x2= .,1.2 一元二次方程的解法(1),【概念】,解:x1 ,x2= .,像这种解一元二次方程的方法叫做直接开平方法.,解方程x22,1.2 一元二次方程的解法(1),【例题精讲】,例1 解下列方程: (1)x240; (2)4x210 ,解:(1)移项,得 x24,,x是4的平方根,,x2,即 x12,x22,(2)移项,得4x21,,两边都除以4,得,x是 的平方根,,x ,即x1 ,x2 ,x2。
16、,苏科数学,1.2 一元二次方程的解法(4),二十九中致远 王玉佳,1.2 一元二次方程的解法(4),你会解关于x的方程ax2bxc0 (a、b、c是常数,a0)吗?,【问题情境】,用配方法解下列一元二次方程:,x22x 30,1.2 一元二次方程的解法(4),【思考与探索】,因为a0,所以方程两边都除以a,得,解:,移项,得,配方,得,即,1.2 一元二次方程的解法(4),【思考与探索】,即,a0,4a20,当b24ac0时,,1.2 一元二次方程的解法(4),【概念】,一般地,对于一元二次方程 , 如果 那么方程的两个根为 , 这个公式叫做一元二次方程的求根公式,利用这个公式,解。
17、,苏科数学,1.2 一元二次方程的解法(2),二十九中致远 王玉佳,1.2 一元二次方程的解法(2),解一元二次方程:x25 ; (x3)25.,你用的是什么方法?这两个方程的解法有相似之处吗?,你会解方程x26x40 吗?,【问题情境】,1.2 一元二次方程的解法(2),怎样解方程x26x40 ?,比较:方程x26x40 与(x3)25,解方程x26x40 的关键是什么?,【数学活动1】,1.2 一元二次方程的解法(2),填空:(1) x22x (x )2;(2) x23x (x )2你发现了什么规律?,【数学活动2】,1.2 一元二次方程的解法(2),解方程x26x40 的步骤是什么?,把一个一元二次方程变形为(xh)。
18、第21章:一元二次方程,人教版九年级上册,21.1 一元二次方程,1、什么是方程?,2、我们学过什么样的方程呢?,含有未知数的等式叫方程,一元(未知数)一次(未知数的指数)方程: ax+b=0(a0),一、知识回顾,情景引入:问题1,二、导入新课,要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?,x,2-x,C,A,B,上部AC ,下部BC有如下关系:即于是得方程:,化简得:,解:,=,BC2=2AC,x2=2(2-x),x2+2x-4=0,学习目标:,1.理解一元二次方程的概念;会把一元二次方程化为一般。
19、,苏科数学,1.1 一元二次方程,29中致远 曹霞,正方形桌面的面积是2m2 ,问:正方形的边长与面积之间有何数量关系?你用什么样的数学式子来描述它们之间的关系?,设正方形桌面的边长是xm,可得:x22,请你说一说,问题2:某校图书馆的藏书在两年内从5万册增加到9.8万册,问:图书馆藏书年平均增长的百分率与藏书量之间有何关系?你用什么样的数学式子来描述它们之间的关系?,设图书馆的藏书平均每年增长的百分率是x,图书馆的藏书一年后为5(1x)万册,两年后为5(1x)2万册,可得:5(1x)2 9.8,请你想一想,问题1:如图,矩形花圃一面靠墙,另外。