22.2二次函数与一元二次方程

5.4第1课时二次函数与一元二次方程 知识点 1二次函数与一元二次方程的关系 1.2018南通期中 在平面直角坐标系xOy中,二次函数y=x2-4x的图像与x轴的交点坐标是() A.(0,0) B.(4,0) C.(4,0),(0,0) D.(2,0),(-2,0) 2.已知二次函数y=x2-3x+

22.2二次函数与一元二次方程Tag内容描述:

1、5.4第1课时二次函数与一元二次方程知识点 1二次函数与一元二次方程的关系1.2018南通期中 在平面直角坐标系xOy中,二次函数y=x2-4x的图像与x轴的交点坐标是()A.(0,0) B.(4,0)C.(4,0),(0,0) D.(2,0),(-2,0)2.已知二次函数y=x2-3x+m(m为常数)的图像与x轴的一个交点坐标为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根是()A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=33.已知关于x的方程ax2+bx+c=0(a0)的两根为x1=1,x2=-5,则二次函数y=ax2+bx+c的图像的对称轴是.4.已知函数y=-2x2+4x+b的部分图像如图5-4-1所示,则关于x的一元二次方程-。

2、,苏科数学,1.1 一元二次方程,29中致远 曹霞,正方形桌面的面积是2m2 ,问:正方形的边长与面积之间有何数量关系?你用什么样的数学式子来描述它们之间的关系?,设正方形桌面的边长是xm,可得:x22,请你说一说,问题2:某校图书馆的藏书在两年内从5万册增加到9.8万册,问:图书馆藏书年平均增长的百分率与藏书量之间有何关系?你用什么样的数学式子来描述它们之间的关系?,设图书馆的藏书平均每年增长的百分率是x,图书馆的藏书一年后为5(1x)万册,两年后为5(1x)2万册,可得:5(1x)2 9.8,请你想一想,问题1:如图,矩形花圃一面靠墙,另外。

3、21 认识一元二次方程认识一元二次方程 第第 1 课时课时 一元二次方程一元二次方程 1了解一元二次方程的概念;(重点) 2掌握一元二次方程的一般形式 ax2bxc0(a,b,c 为常数,a0),能分清二次项、一次 项与常数项以及二次项系数、一次项系数等,会把一元二次方程化成一般形式;(重点) 3能根据具体问题的数量关系,建立方程的模型(难点) 一、情景导入 一个面积为 120m2。

4、26 应用一元二次方程应用一元二次方程 第第 1 课时课时 几何问题及数字问题与一元二次方程几何问题及数字问题与一元二次方程 1掌握列一元二次方程解决几何问题、数学问题,并能根据具体问题的实际意义,检验结果 的合理性;(重点、难点) 2理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提 出问题、分析问题,并能运用所学的知识解决问题 一、情景导入 要设计一本书的封面,。

5、22.2 用函数观点看一元二次方程,1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.用图象法求一元二次方程的近似根.,问题:,1.一次函数y=2x-4与x轴的交点坐标是( , ) 2.说一说,你是怎样得到的?,2,0,令y=0代入函数解析式即可,问题:如图,以40m/s的速度将小球沿与地面成30 角的方向击出时,球的飞行路线将是一条抛物线, 如果不考虑空气的阻力,球的飞行高度h(单位:m) 与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,15,1,3,。

6、30.5二次函数与一元二次方程的关系知识点 1二次函数图像与x轴交点的横坐标1.(1)二次函数y=ax2+bx+c的图像如图30-5-1所示,则方程ax2+bx+c=0的根是,;(2)方程x2+3x+2=0的根是,抛物线y=x2+3x+2与x轴的交点坐标是和.图30-5-12.已知二次函数y=x2+bx+c的图像与x轴的两个交点坐标分别为(3,0)和(-1,0),则一元二次方程x2+bx+c=0的两个根是()A.x1=1,x2=3 B.x1=-3,x2=1C.x1=3,x2=-1 D.x1=-1,x2=-33.二次函数y=-x2+6x-9的图像与x轴交点的横坐标为.知识点 2二次函数图像与x轴的交点个数4.教材“做一做”变式题 抛物线y=-3x2-x+4与x轴的公共点的个数是()A。

7、第21章:一元二次方程,人教版九年级上册,21.1 一元二次方程,1、什么是方程?,2、我们学过什么样的方程呢?,含有未知数的等式叫方程,一元(未知数)一次(未知数的指数)方程: ax+b=0(a0),一、知识回顾,情景引入:问题1,二、导入新课,要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?,x,2-x,C,A,B,上部AC ,下部BC有如下关系:即于是得方程:,化简得:,解:,=,BC2=2AC,x2=2(2-x),x2+2x-4=0,学习目标:,1.理解一元二次方程的概念;会把一元二次方程化为一般。

8、第 1 页 共 6 页(人教版)九年级上 第二十二章 22.2 二次函数与一元二次方程 课时练学校: 姓名: 班级: 考号: 评卷人 得分一、选择题1. 已知二次函数 y=ax2+bx+c(a0)的部分图象如图所示,若 y4 D. x3 2. 二次函数 y=2x2+mx+8 的图象如图所示 ,则 m 的值是 ( )A. -8 B. 8 C. 8 D. 6 3. 抛物线 y=kx2-7x-7 的图象和 x 轴有公共点,则 k 的取值范围是 ( )A. k- B. k- 且 k0 C. k- D. k- 且 k0 74 74 74 744. 二次函数 y=ax2+bx 的图象如图所示,若一元二次方程 a。

9、学习目标 1.从函数观点看一元二次方程了解函数的零点与方程根的关系.2.从函数观点看 一元二次不等式经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的 现实意义.3.借助一元二次函数的图象,了解.。

10、22.2 二次函数与一元二次方程基础闯关全练拓展训练1.(2016 山东滨州中考)抛物线 y=2x2-2 x+1 与坐标轴的交点个数是( )2A.0 B.1 C.2 D.32.(2017 青海西宁城北月考)已知二次函数 y1=ax2+bx+c(a0)与一次函数 y2=kx+m(k0)的图象相交于点 A(-2,4),B(8,2),如图所示,能使 y1y2 成立的 x 的取值范围是( )A.x8 D.x83.(2017 新疆乌鲁木齐天山自主招生)二次函数 y=ax2+bx+c 的图象如图所示, 则方程ax2+bx+c=0 的两根之和为 . 4.(2017 重庆沙坪坝期中)已知二次函数 y=ax2+bx+c(a0)中, 自变量 x 与函数值 y 的部分对应值如下表:x -1 0 1 2 y 0 3 4 3 则。

11、22.2二次函数与一元二次方程,第二十二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.通过探索,理解二次函数与一元二次方程(不等式)之间的联系.(难点) 2.能运用二次函数及其图象、性质确定方程的解或不等式的解集.(重点) 3.了解用图象法求一元二次方程的近似根.,导入新课,情境引入,问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:,讲授新课,(1)球的飞行高。

12、22.2 二次函数与一元二次方程测试时间:20 分钟一、选择题1.(2018 安徽亳州利辛月考)抛物线 y=x2-2x+1 与坐标轴的交点有 ( ) A.3 个 B.2 个 C.1 个 D.0 个2.根据下表可以确定方程 ax2+bx+c=0(a0)的一个解的取值范围是( )x 2 2.23 2.24 2.25ax2+bx+c -0.05 -0.02 0.03 0.07A.20,则 x 的取值范围是 . 三、解答题7.(。

13、人教版数学九年级上册三年中考真题同步练习22.2 二次函数与一元二次方程一选择题(共 16 小题)1(2018杭州)四位同学在研究函数 y=x2+bx+c(b ,c 是常数)时,甲发现当x=1 时,函数有最小值;乙发现 1 是方程 x2+bx+c=0 的一个根;丙发现函数的最小值为 3;丁发现当 x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A甲 B乙 C丙 D丁2(2018大庆)如图,二次函数 y=ax2+bx+c 的图象经过点 A(1,0)、点B(3 ,0)、点 C(4,y 1),若点 D(x 2,y 2)是抛物线上任意一点,有下列结论:二次函数 y=ax2+bx+c 。

14、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。

15、,苏科数学,5.4 二次函数与一元二次方程(2),忆一忆,函数yx22x3的图像如图所示,你能看出方程x22x30的解吗?,函数yx22x1的图像如图所示,你能看出方程x22x10的解吗?,想一想,利用计算器进行探索,x 0.4,缩小它的范围,x 0.41,x 0.414,继续缩小它的范围,算一算,你能用同样的方法求方程的另一个根吗?试试看!,做一做,我们也可以用取中间值逼近的方法去求它的近似根,2x 3,2 x 2.5,2.25 x 2.5,2 x 2.5,继续逼近,2.375 x2.5,2.375 x2.4375,x2.4,继续逼近.,2,3,+,2.5,+,2.25,2.375,2x3,2x2.5,2.25x2.5,2.375x2.5,用线段表示逼近的过程,_,_,_,2.43。

16、22.2 用函数观点 看一元二次方程,(复习课),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 B 只有一个交点 C 有两个交点 。

17、第22章:二次函数,22.2 二次函数与一元一次方程,人教版九年级上册,学习目标:,1.了解二次函数与一元二次方程之间的关系。2.理解一元二次方程根的几何意义,会灵活运用一元二次方程根的判别式处理二次函数图象与x轴的交点问题。,问题1:如图,以40m/s的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题: (1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,(1)球的飞行高度能否达到15m?如果能,。

18、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(2),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 。

19、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(1),1.经历用图象法求一元二次方程的近似解的过程,获得用图象法求方程近似解的经验与方法,体会数形结合的重要数学思想。2.会用二次函数的图象解决有关方程与不等式问题。3.掌握和理解二次函数有关代数式符号的确定。,一、学习目标,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2。

【22.2二次函数与一元二次方】相关PPT文档
【22.2二次函数与一元二次方】相关DOC文档
标签 > 22.2二次函数与一元二次方程[编号:79336]