一元二次方程 苏科版

UNITTWO第8课时一元二次方程第二单元方程(组)与不等式(组)|考点聚焦|考点一一元二次方程的概念及一般形式一2考点二一元二次方程的四种解法考点三一元二次方程21.1一元二次方程第二十一章一元二次方程1.将实际问题转化为一元二次方程模型的过程中,形成对一元二次方程的感性认识.2.理解一元二次方程

一元二次方程 苏科版Tag内容描述:

1、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第2课时 利用一元二次方程解决面积问题,导入新课,讲授新课,当堂练习,课堂小结,1.能够建立一元二次方程模型解决有关面积的问题. (重点、难点) 2.能根据具体问题的实际意义检验结果的合理性.(难点),学习目标,问题1:解一元二次方程我们学过哪几种方法?,直接开平方法 ,配方法,公式法 .,问题2:请某小区规划在一个长30m、宽20m的长方形土地上修建三条等宽的通道,使其中两条与AB平行,另外两条与AD平行,其余部分种花草,要使每一块花草的面积都为78m2,那么通道宽应该设计为多少?设。

2、2.2 用配方法求解一元二次方程,第二章 一元二次方程,第2课时 用配方法求解较复杂的一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.会用配方法解二次项系数不为1的一元二次方程;.(重点) 2.能够熟练地、灵活地应用配方法解一元二次方程.(难点),学习目标,问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?,步骤:(1)将常数项移到方程的右边,使方程的左边只含二 次项和一次项;(2)两边都加上一次项系数一半的平方.(3)直接用开平方法求出它的解.,导入新课,问题1:观察下面两个是一元二次方程的联系和区别: x2 + 6x。

3、2.2 用配方法求解一元二次方程,第二章 一元二次方程,第1课时 用配方法求解简单的一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.会用直接开平方法解形如(x+m)2n (n0)的方程.(重点) 2.理解配方法的基本思路.(难点) 3.会用配方法解二次项系数为1的一元二次方程.(重点),学习目标,填一填: 1.如果 x2 = a,那么 x= . 2.若一个数的平方等于9,则这个数是 ;若一个数的平方等于7,则这个数是 . 3.完全平方式:式子a2 2ab +b2叫完全平方式,且a2 2ab +b2 = .,3,(ab),导入新课,例1:用直接开平方法解下面一元二次方程.(1)x2 = 5; (2)2x2。

4、2.1 认识一元二次方程,第二章 一元二次方程,第2课时 一元二次方程的解及其估算,导入新课,讲授新课,当堂练习,课堂小结,1.理解方程的解的概念. 2.经历对一元二次方程解的探索过程并理解其意义.(重点) 3.会估算一元二次方程的解.(难点),学习目标,一元二次方程有哪些特点?一元二次方程的一般形式是什么?,一元二次方程的特点: 只含有一个未知数; 未知数的最高次项系数是2; 整式方程 一元二次方程的一般形式:ax2 +bx + c = 0(a , b , c为常数, a0),导入新课,一元二次方程的根:使一元二次方程等号两边相等的未知数的值叫作一元二次方程的。

5、2.1 认识一元二次方程,第二章 一元二次方程,第1课时 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,1.了解一元二次方程的概念;(重点) 2.掌握一元二次方程的一般形式ax2+bx+c=0(a, b, c为常数,a0). (重点) 3.能根据具体问题的数量关系,建立一元二次方程的模型.(难点),学习目标,导入新课,复习引入,没有未知数,代数式,一元一次方程,二元一次方程,不等式,分式方程,2.什么叫方程?我们学过哪些方程?,含有未知数的等式叫做方程.,我们学过的方程有一元一次方程,二元一次方程(组)及分式方程,其中前两种方程是整式方程.,3.什么叫。

6、第二章 一元二次方程1 认识一元二次方程第 1 课时 一元二次方程的定义1理解和掌握一元二次方程的定义,会判断一个方程是不是一元二次方程2了解一元二次方程的一般形式、二次项、一次项、常数项及二次项系数、一次项系数3能根据具体情境,列出一元二次方程重点理解和掌握一元二次方程的相关概念难点能根据具体情境,列出一元二次方程一、情境导入课件出示教材第 31 页图 21,提出问题:幼儿园某教室矩形地面的长为 8 m,宽为 5 m,现准备在地面的正中间铺设一块面积为18 m2 的地毯,四周未铺地毯的条形区域的宽度都相同 , 你能求出这个宽。

7、22.2 用函数观点 看一元二次方程,(复习课),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 B 只有一个交点 C 有两个交点 。

8、22.2用函数的观点看一元二次方程(2),学习目标:,1.经历用图象法求一元二次方程的近似解的过程,获得用图象法求方程近似解的经验与方法,体会数形结合的重要数学思想。2.会用二次函数的图象解决有关方程与不等式问题。3.掌握和理解二次函数有关代数式符号的确定。,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2x2x3,解:当 y = 0 时,,2x2x3 = 0,。

9、第22章:二次函数,22.2 二次函数与一元一次方程,人教版九年级上册,学习目标:,1.了解二次函数与一元二次方程之间的关系。2.理解一元二次方程根的几何意义,会灵活运用一元二次方程根的判别式处理二次函数图象与x轴的交点问题。,问题1:如图,以40m/s的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题: (1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,(1)球的飞行高度能否达到15m?如果能,。

10、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(2),1.已知二次函数y=ax+bx+c的图象如图所示,则 一元二次方程ax+bx+c=0的解是 .,X,Y,0,5,知识回顾,2,2,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b2 4ac= 0,b2 4ac0,c0时,图象与x轴交点情况是( )A 无交点 。

11、第22章 二次函数,人教版九年级上册,22.2二次函数与一元二次方程(1),1.经历用图象法求一元二次方程的近似解的过程,获得用图象法求方程近似解的经验与方法,体会数形结合的重要数学思想。2.会用二次函数的图象解决有关方程与不等式问题。3.掌握和理解二次函数有关代数式符号的确定。,一、学习目标,已知二次函数,求自变量的值,解一元二次方程的根,二次函数与一元二次方程的关系(1),下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标.(1) y = 2x2x3(2) y = 4x2 4x +1(3) y = x2 x+ 1,令 y= 0,解一元二次方程的根,(1) y = 2。

12、第21章:一元二次方程,人教版九年级上册,21.1 一元二次方程,1、什么是方程?,2、我们学过什么样的方程呢?,含有未知数的等式叫方程,一元(未知数)一次(未知数的指数)方程: ax+b=0(a0),一、知识回顾,情景引入:问题1,二、导入新课,要设计一座2m高的人体雕像,修雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?,x,2-x,C,A,B,上部AC ,下部BC有如下关系:即于是得方程:,化简得:,解:,=,BC2=2AC,x2=2(2-x),x2+2x-4=0,学习目标:,1.理解一元二次方程的概念;会把一元二次方程化为一般。

13、第二十一章 一元二次方程211 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题2掌握一元二次方程的一般形式 ax2bxc0(a0)及有关概念3会进行简单的一元二次方程的试解;理解方程解的概念重点:一元二次方程的概念及其一般形式;一元二次方程解的探索难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项一、自学指导(10 分钟)问题 1:如图,有一块矩形铁皮,长 100 cm,宽 50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

14、第二十一章 一元二次方程211 一元二次方程1通过类比一元一次方程,了解一元二次方程的概念及一般式 ax2bxc0(a 0),分清二次项及其系数、一次项及其系数与常数项等概念2了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解重点通过类比一元一次方程,了解一元二次方程的概念及一般式 ax2bxc0(a 0)和一元二次方程的解等概念,并能用这些概念解决简单问题难点一元二次方程及其二次项系数、一次项系数和常数项的识别活动 1 复习旧知1什么是方程?你能举一个方程的例子吗?2下列哪些方程是一元一次方程?并给出一元一次方程的概念。

15、课题8 一元二次方程及其应用,基础知识梳理,中考题型突破,易混易错突破,河北考情探究,考点一 一元二次方程的相关概念及解法 形如 ax2+bx+c=0 (其中a、b、c为常数,a0)的方程为一元二次方程,满 足三个条件:(1)等号两边都是 整式 ;(2)只含有 一个 未知数;(3)未 知数的最高次数是 2 .,基础知识梳理,1.关于x的一元二次方程ax2+bx+c=0(a0)的根的判别式为b2-4ac,通常把它记 作,即=b2-4ac. (1)b2-4ac0方程有 两个不相等 的实数根. (2)b2-4ac=0方程有 两个相等 的实数根. (3)b2-4ac0方程 没有 实数根.,考点二 一元二次方程的解法,2.一元二次方程的解。

16、22.2 用函数观点看一元二次方程,1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.用图象法求一元二次方程的近似根.,问题:,1.一次函数y=2x-4与x轴的交点坐标是( , ) 2.说一说,你是怎样得到的?,2,0,令y=0代入函数解析式即可,问题:如图,以40m/s的速度将小球沿与地面成30 角的方向击出时,球的飞行路线将是一条抛物线, 如果不考虑空气的阻力,球的飞行高度h(单位:m) 与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,15,1,3,。

17、21.3 实际问题与一元二次方程 第2课时,1.了解几种特殊图形的面积公式. 2.掌握面积法建立一元二次方程的数学模型,并运用它 解决实际问题.,1.列方程解应用题有哪些步骤?对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程解应用题.上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题”.,2.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?3.正方形的面积公式是什么呢?长方形的面积公式又是什么?4.梯形的面积公式是什么?5.菱形的面积公式是什么?6.平行四边形的面积。

18、21.3 实际问题与一元二次方程 第1课时,1.掌握列一元二次方程解应用题的步骤:审、设、列、 解、检、答 2.建立一元二次方程的数学模型,解决如何全面地比较 几个对象的变化状况,我们已经学过了几种解一元二次方程的方法?,分解因式法 (x-p)(x-q)=0,直接开平方法,配方法,x2=a (a0),(x+m)2=n (n0),公式法,【例1】 有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个?,开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_人患了流感;,第二轮传染中,这些人中的每个。

19、21.1 一元二次方程,第二十一章 一元二次方程,1.将实际问题转化为一元二次方程模型的过程中,形成对一元二次方程的感性认识. 2.理解一元二次方程的定义,能识别一元二次方程. 3.知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式中一元二次方程的二次项系数、一次项系数和常数项.,问题一:如图,有一块矩形铁皮,长100 cm,宽50 cm 在它的四个角分别切去一个正方形,然后将四周突出的 部分折起,就能制作一个无盖方盒如果要制作的无盖 方盒的底面积是3600 cm2,那么铁皮各角应切去多大的 正方形?,对于上。

20、UNIT TWO,第 8 课时 一元二次方程,第二单元 方程(组)与不等式(组),| 考点聚焦 |,考点一 一元二次方程的概念及一般形式,一,2,考点二 一元二次方程的四种解法,考点三 一元二次方程的根的判别式,两个不相等,两个相等,没有,考点四 一元二次方程根与系数的关系,考点五 一元二次方程的应用,| 对点演练|,题组一 必会题,2018,(x-1)2=3,2,x1=0,x2=1,256(1-x)2=169,题组二 易错题,C,-1,m且m0,12,探究一 一元二次方程的有关概念,B,针对训练,探究二 一元二次方程的解法,针对训练,探究三 一元二次方程根的判别式微专题,考向1 判断根的情况,探究三 。

【一元二次方程 苏科版】相关PPT文档
2.1一元二次方程(第1课时)课件
22.2用函数的观点看一元二次方程(2)课件
22.2用函数的观点看一元二次方程(1)课件
22.2二次函数与一元二次方程(2)课件
22.2二次函数与一元二次方程(1)课件
21.1《一元二次方程》课件
人教版数学九年级上21.1一元二次方程课件
【一元二次方程 苏科版】相关DOC文档
标签 > 一元二次方程 苏科版[编号:21600]