人教版数学九年级上22.2用函数观点看一元二次方程课件

上传人:好样****8 文档编号:30637 上传时间:2018-11-20 格式:PPT 页数:21 大小:2.69MB
下载 相关 举报
人教版数学九年级上22.2用函数观点看一元二次方程课件_第1页
第1页 / 共21页
人教版数学九年级上22.2用函数观点看一元二次方程课件_第2页
第2页 / 共21页
人教版数学九年级上22.2用函数观点看一元二次方程课件_第3页
第3页 / 共21页
人教版数学九年级上22.2用函数观点看一元二次方程课件_第4页
第4页 / 共21页
人教版数学九年级上22.2用函数观点看一元二次方程课件_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、22.2 用函数观点看一元二次方程,1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.用图象法求一元二次方程的近似根.,问题:,1.一次函数y=2x-4与x轴的交点坐标是( , ) 2.说一说,你是怎样得到的?,2,0,令y=0代入函数解析式即可,问题:如图,以40m/s的速度将小球沿与地面成30 角的方向击出时,球的飞行路线将是一条抛物线, 如果不考虑空气的阻力,球的飞行高度h(单位:m) 与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 考虑以下问题:,(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?,15,1,3,当球飞行1s或3s时,

2、它的高度为15m.,解析:解方程 15=20t-5t2t2-4t+3=0t1=1,t2=3,你能结合上图,指出为什么在两个时间求的高度为15m吗?,(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?,20,4,(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?,你能结合图形指出为什么球不能达到20.5m的高度?,20.5,(4)球从飞出到落地要用多少时间?,例如,解方程x2-4x+3=0 就是已知二次函数y=x2-4x+3的值为0,求自变量x的值. 一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x

3、2,0).,从上面可以看出,二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以看作解一元二次方程-x2+4x=3.,有两个交点,有两个不相等的实数根,b2-4ac 0,只有一个交点,有两个相等 的实数根,b2-4ac = 0,没有交点,没有实数根,b2-4ac 0,b24ac= 0,b24ac0,c0时,图象与x轴交点情况是( ) A 无交点 B 只有一个交点 C 有两个交点 D不能确定,D,C,3.如果关于x的一元二次方程 x2-2x+m=0有两个相等的 实数根,则m=,此时抛物线 y=x2-2x+m与x轴有 个交点. 4.已知抛物线 y=x28

4、x +c的顶点在 x轴上, 则c=.,1,1,16,解析: (1)先作出图象;(2)写出交点的坐标: (-1.3,0)、(2.3,0)(3)得出方程的解.x1=-1.3,x2=2.3.,利用二次函数的图象求方程x2-x-3=0的实数根(精确到0.1).,x,y,用你学过的一元二次方程的解法来解, 准确答案是什么?,1.根据下列表格的对应值:判断方程ax2+bx+c=0 (a0,a,b,c为常数)一个解 x的范围是( ) A.3X3.23 B.3.23X3.24 C.3.24X3.25 D.3.25X3.26,C,2.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c

5、=0的解是 .,X,Y,0,5,x1=0,x2=5,3(金华中考)若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2= ;,-1,4(绥化中考)抛物线,与x轴的一个交点的坐标为(l,0), 则此抛物线与x轴的另一个交点的坐标是 .,(3,0),5. (济宁中考)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示: 点A(x1,y1)、B(x2,y2)在函数的图象上, 则当1y2 B. y1 y2 C. y1 y2 D.y1 y2,【解析】选B.可画出图象,由表和图象可知二次函数图象的对称轴是x=2由图象知y1y2.,通过本课时的学习,需要我们掌握: 1.由一元二次方程ax2+bx+c=0根的情况可确定二次函数y=ax2+bx+c与x轴交点的个数情况; 2.用图象法求一元二次方程的近似根.,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 人教版 > 九年级上册