北师大版八年级数学上册:第六章《数据的分析》教案

上传人:好样****8 文档编号:39685 上传时间:2018-12-23 格式:DOC 页数:10 大小:296KB
下载 相关 举报
北师大版八年级数学上册:第六章《数据的分析》教案_第1页
第1页 / 共10页
北师大版八年级数学上册:第六章《数据的分析》教案_第2页
第2页 / 共10页
北师大版八年级数学上册:第六章《数据的分析》教案_第3页
第3页 / 共10页
北师大版八年级数学上册:第六章《数据的分析》教案_第4页
第4页 / 共10页
北师大版八年级数学上册:第六章《数据的分析》教案_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第六章 数据的分析1 平均数第 1 课时 算术平均数与加权平均数1掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数2经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力3通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系重点掌握算术平均数、加权平均数的概念难点理解加权平均数的概念,会求一组数据的加权平均数一、情境导入1课件出示教材第 135 页第六章的章前文字、章前图和一组问题,引入本章主题2用篮球比赛引入本节课题师:篮球运动是大家喜欢的一种运动项目,尤其是男生更是倍爱有加下

2、面播放一段CBA(中国篮球协会)20052006 赛季“广东宏远队”和“ 八一双鹿队”的一场比赛片段,请同学们欣赏在学生观看了篮球比赛的片段后,请学生思考:(1)影响比赛的成绩有哪些因素?( 心理、技术、配合、身高、年龄等因素) (2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高 ”? 要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断)在学生的议论交流中引入本节课题:平均数二、探究新知1算术平均数(1)课件出示教材第 136 页提供的中国男子篮球职业联赛 20112012 赛季冠、亚军球队队员身高、年龄的表格,提出问

3、题: “北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身高更高?哪支球队队员更为年轻?你是怎样判断的?与同伴进行交流学生先独立思考,计算出平均数,然后在小组交流解:北京金隅队队员的平均身高为 1.98 m,平均年龄为 25.4 岁;广东东莞银行队队员的平均身高为 2.00 m,平均年龄为 24.1 岁所以,广东东莞银行队队员的身高更高,更为年轻教师小结:日常生活中我们常用平均数来描述一组数据的集中趋势一般地,对于 n 个数 x1,x 2,x n,我们把 (x1x 2x n)叫做这 n 个数的算术平1n均数,简称平均数,记为 x.(2)课件出示教材第 137 页“想一想” 学生经过

4、讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法2加权平均数课件出示教材第 137 页例题引导学生思考讨论:第(1)(2)问中录用的人不一样说明了什么?从而认识由于测试的每一项的重要性不同,所以所占的比份也不同,计算出的平均数就不同,因此重要性的差异对结果的影响是很大的在学生认识的基础上,教师结合例题给出加权平均数的概念:实际问题中,一组数据里的各个数据的“重要程度”未必相同因而,在计算这组数据的平均数时,往往给每个数据一个“权” 例如,在例题中 4,3,1 分别是创新、综合知识、语言三项测试成绩的权,而称 为 A 的

5、三项测试成绩的加724 503 8814 3 1权平均数三、练习巩固教材第 138 页“随堂练习”第 1,2 题四、小结引导学生小结算术平均数和加权平均数的概念及运用五、课外作业教材第 138139 页习题 6.1 第 15 题教学中以提问的方式导入新课,通过设置的问题引导学生进行自我探索与小组间的合作交流 ,让学生理解算术平均数的意义,通过例题的讲解,让学生归纳总结出加权平均数的计算方法,加深了学生对加权平均数的理解,教学过程要加强练习,提高学生的计算能力,注意算术平均数与加权平均数的类比,提高学生分析问题和解决问题的能力第 2 课时 算术平均数与加权平均数的应用1会求加权平均数,体会权的差

6、异对平均数的影响;理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题2通过探索算术平均数和加权平均数的联系与区别的过程,培养学生的思维能力;通过有关平均数的问题的解决,发展学生的数学应用能力3通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心重点会求加权平均数,体会权的差异对平均数的影响难点理解算术平均数和加权平均数的联系与区别,能利用平均数解决实际问题一、复习导入师:什么是算术平均数?什么是加权平均数?请同学们各举一个有关算术平均数和加权平均数的实例,与同伴进行交流在学生的复习交流中引入课题:本节课将继续研究生活中的加权平均数,以及

7、算术平均数和加权平均数的联系与区别二、探究新知课件出示教材第 139 页学校广播操比赛题对于第(1)问,让每一位学生动手计算,然后教师抽取几个不同层次的学生做的结果投影展示,进行评价解:一班的广播操成绩为:910%820% 930%840%8.4( 分)二班的广播操成绩为:1010%920% 730%840%8.1( 分)三班的广播操成绩为:810%920% 830%940%8.6( 分)因此,三班的广播操成绩最高对于第(2)问,让学生先在小组内各抒己见,然后在全班交流体会 ,归纳:以上四项所占的比例不同,即权有差异,得出的结果就会不同,也就是说权的差异对结果有影响三、举例分析小颖家去年的饮食

8、支出为 3 600 元,教育支出为 1 200 元,其他支出为 7 200 元,小颖家今年的这三项支出依次比去年增长 9%,30% ,6%,小颖家今年的总支出比去年增长的百分数是多少?以下是小明和小亮的两种解法,谁做得对?说说你的理由小明: (9%30%6%) 15%.13小亮: 9.3%.9%3600 30%1 200 6%7 2003 600 1 200 7 200学生分组讨论,全班交流,说明理由:由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出

9、金额 3 600,1 200,7 200 分别视为三项支出增长率的“权” ,从而求出总支出的增长率所以小亮的解法是对的四、练习巩固1教材第 139 页“议一议” 2教材第 140 页“随堂练习”第 1,2 题注意事项:对学生的解题过程和结果做适当的评价,特别要关注中下等生,对他们点点滴滴的进步都要给予鼓励五、小结师:说说算术平均数与加权平均数有哪些联系与区别?教师引导学生比较、议论、交流、总结出结论:算术平均数是加权平均数各项的权都相等的一种特殊情况,即算术平均数是加权平均数,而加权平均数不一定是算术平均数由于权的不同,导致结果不同,故权的差异对结果有影响六、课外作业教材第 140141 页习

10、题 6.2 的第 16 题数学学习不能单纯依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式本节课的几个教学环节通过想一想、议一议、做一做等数学活动来引导学生探索和交流,体会权的差异对平均数的影响,认识算术平均数和加权平均数的联系与区别在改变学生学习方式的同时让学生增强数学的应用意识,了解数学的价值,提高思维能力, 增进学好数学的信心.2 中位数与众数1掌握中位数、众数的概念,会求出一组数据的中位数与众数;能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判2通过解决实际问题的过程,区分刻画“平均水平”的三个数据代表,让学生获得一

11、定的评判能力,进一步发展其数学应用能力3将知识的学习放在解决问题的情境中,通过数据分析与处理,体会数学与现实生活的联系,培养学生求真的科学态度重点理解中位数、众数的概念,会求出一组数据的中位数与众数难点能结合具体情境体会平均数、中位数和众数三者的区别,能初步选择恰当的数据代表对数据作出自己的正确评判一、情境导入师:在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话” ,所以对数据作出恰当的评判是很重要的下面请看一例:某次数学考试,小英得了 78 分全班共 32 人,其他同学的成绩为 1 个 100 分,4 个90 分,22 个 80 分,2 个 62 分,1 个 30 分,

12、1 个 25 分小英计算出全班的平均分为 77.4 分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平” 小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的原因是全班的平均分受到了两个极端数据 30 分和 25 分的影响,利用平均数反应问题就出现了偏差师:怎样说明这个问题呢?我们需要学习新的数据代表中位数与众数二、探究新知课件出示教材第 142 页有关某公司员工的收入的题目学生四人小组讨论,交流自己的看法,教师对表现积极的学生予以鼓励在学生讨论交流的基础上

13、,教师进行点拨:上述问题中,经理、职员 C、职员 D 从不同的角度描述了该公司的收入情况:(1)月平均工资 2 700 元,指所有员工工资的平均数是 2 700 元,但只有正、副经理的工资比平均工资高,是他们两人的工资把平均工资“拉”高了(2)职员 C 的工资是 1 900 元 ,恰好居于所有员工工资的“ 正中间”( 恰有 4 人的工资比他高,有 4 人的工资比他低) ,我们称 1 900 元是这组数据的中位数(3)9 个员工中有 3 个人的工资为 1 800 元,出现的次数最多 ,我们称 1 800 元是这组数据的众数师:你认为用哪个数据表示该公司员工收入的平均水平更合适?让学生讨论,充分发

14、表不同的观点,然后归纳:用中位数 1 900 元或众数 1 800 元表示该公司员工收入的平均水平更合适些,因为平均数 2 700 元受到了极端值的影响结合上述问题的探究,引入中位数、众数的概念: 一般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数) 叫做这组数据的中位数一组数据中出现次数最多的那个数据叫做这组数据的众数教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平” 让学生用中位数、众数的概念解释引例中小英的数学成绩的问题注意事项:在问题的讨论中,学生从不同的角度理解问题会有不同的观点,只要学生说得有道理,教师就应给予肯定和鼓励

15、,不可强求结论的一致性三、举例分析1对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法正确的是( )A. 这组数据的众数是 3B. 这组数据的众数与中位数的数值不等C. 这组数据的中位数与平均数的数值相等D. 这组数据的平均数与众数的数值相等答案:A220112012 赛季北京金隅队队员身高的平均数、中位数、众数分别是多少?四、练习巩固你课前所调查的 20 名男同学所穿运动鞋尺码的平均数、中位数、众数分别是多少?你认为学校商店应多进哪种尺码的男式运动鞋?五、小结师:平均数、中位数和众数有哪些特征?学生讨论交流,师生共同总结特征:1用平均数作为一组数据的代表,比较可靠和稳定,它

16、与这组数据中的每一个数都有关系,对这组数据所包含的信息的反映最为充分,因此在现实生活中较为常用,但它容易受极端值的影响. 2用中位数作为一组数据的代表,可靠性比较差,它不能充分利用所有数据的信息,但它不受极端值的影响,当一组数据中有个别数据变动较大时,可用它来描述这组数据的“集中趋势” 3用众数作为一组数据的代表,可靠性也比较差,其大小只与这组数据中的部分数据有关,但它不受极端值的影响当一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一种统计量要根据不同的实际需要,确定是用平均数、中位数还是众数来反映数据的平均水平六、课外作业1教材第 144 页习题 6.3 第 1,2,3 题2收集

17、一组与本班同学相关的生活数据(例如每分钟心跳的次数,眼睛近视的度数、身高、体重等),并选择恰当的数据代表来说明本组数据的特征“学起于思,思起于疑” ,思维是从问题开始的本节课通过问题情境,启发学生思考,引起认知冲突,引导学生逐步深入地揭示新知识、应用新知识需要注意的是:学生有自己的看法和意见,教师不可一味地否定教师要关注学生思考问题的过程,千万不要代替学生思考,更不可强加给学生固定的思维模式让学生在独立思考和合作交流中解决问题,发展数学应用能力3 从统计图分析数据的集中趋势1能正确读懂统计图,并能从统计图中获取相应的信息2能根据统计图中的信息分析数据的集中趋势结合统计图分析数据的集中趋势,解决

18、生活中的实际问题3培养学生认真、耐心、细致的学习态度和学习习惯渗透数学来源于实践,并服务于实践的观点重点从统计图中分析数据的集中趋势难点熟练地根据统计图分析数据的集中趋势,并能灵活运用所学的三个数据代表解决实际问题一、复习导入师:通过前面几节课的学习,我们已经知道了平均数、中位数和众数,同学们能说一说它们的概念吗?学生回答,教师总结一般地,对于 n 个数 x1,x 2,x n,我们把 (x1x 2x n)叫做这 n 个数的算术平1n均数,简称平均数在实际问题中,一组数据里的各个数据的“重要程度”未必相同因而,在计算这组数据的平均数时,往往给每个数据一个“权” 这样求出来的平均数叫做加权平均数一

19、般地,n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数) 叫做这组数据的中位数一组数据中出现次数最多的那个数据叫做这组数据的众数师:今天这节课我们接着来学习如何根据统计图分析数据的集中趋势板书课题:从统计图分析数据的集中趋势二、探究新知师:面包是我们在日常生活中常见到的一种食品,为了检查面包的质量是否达标,随机抽取了同种规格的面包 10 个,10 个面包的质量如图所示:师:从这幅图中,你能看出这 10 个面包质量的众数是多少吗?生:从图中可以看出 10 个面包的质量分别为 95 g,97 g,98 g,99 g,100 g,100 g,100 g,101 g,103

20、 g,105 g所以这 10 个面包质量的众数是 100 g.师:你能估计出一个这样的面包的平均质量吗?生:能,平均质量为: (959798993100101103105) 99.8(g)110师:很好!下面我们再看一道题课件出示教材第 145 页“议一议” 师:同学们能回答这些问题吗?生 1:从图中很容易就可以看出三支球队队员年龄的众数,甲队队员年龄的众数是 20岁,乙队队员年龄的众数是 19 岁,丙队队员年龄的众数是 21 岁生 2:甲队队员年龄的中位数是 20 岁,乙队队员年龄的中位数是 19 岁,丙队队员年龄的中位数是 21 岁生 3:通过观察统计图,可以估计出丙队队员的平均年龄大,其

21、次是甲队,乙队队员的平均年龄最小生 4:甲队队员的平均年龄为: (1819320421322) 20.25(岁);112乙队队员的平均年龄为: (1831952022122) 19.33(岁);112丙队队员的平均年龄为: (1819220215223) 20.58(岁)112三、举例分析1课件出示教材第 145146 页“做一做” 、 “想一想” 学生先独立完成,再小组讨论2课件出示教材第 146 页例题解:(1)根据扇形统计图,35占的比例最大,因此日平均气温的众数是 35;(2)这 10 天日最高气温的平均值是:3210%3320%3420% 3530% 3620%34.3()四、巩固练

22、习教材第 146 页“随堂练习” 五、小结师:在本节课的学习中,你通过从统计图分析数据的平均数、中位数和众数的学习有什么认识,有什么经验?六、课外作业教材第 147148 页习题 6.4 第 15 题本节课通过想一想、 议一议、 做一做等探究活动,向学生提供充分从事数学活动的机会, 使他们在自主探索和合作交流的过程中进一步理解平均数、中位数、众数的实际含义;学会从条形统计图、扇形统计图等统计图中获取信息,分析相关数据的平均数、中位数、众数;从而增强统计意识和数据处理能力,培养探索精神和创新意识教师一定要鼓励学生积极探索,体验数学活动的趣味与应用价值,让学生在相互交流中,互相启发,共同进步.4

23、数据的离散程度第 1 课时 极差、方差和标准差1了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值2经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力3通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系重点理解方差和标准差的概念难点应用方差和标准差分析数据,并作出决策一、情境导入课件出示教材第 149 页图 65 及其题目在学生讨论交流的基础上,教师结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差它是刻画数据离散程度的一个统计量注意事项:当一组数据的平均数与中位数相

24、近时,学生在原有的知识与遇到问题情境产生知识碰撞时,才能较好地理解概念二、探究新知课件出示教材第 150 页“做一做” 学生独立完成,教师点评引出方差和标准差的概念数学上,数据的离散程度还可以用方差或标准差刻画方差是各个数据与平均数差的平方的平均数,即:s2 (x1x) 2 (x2x) 2.(x nx) 21n注:x 是这一组数据 x1,x 2,x n 的平均数,s 2 是方差,而标准差就是方差的算术平方根一般说来,一组数据的极差、方差或标准差越小,这组数据就越稳定说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位三、举例分析1用计算器

25、求下列一组数据的标准差:98 99 101 102 100 96 104 99 101 100请你使用计算器探索求一组数据的标准差的具体操作步骤具体操作步骤是(以 CZ1206 为例) :(1)进入统计计算状态,按 ;2ndfSTAT(2)输入数据然后按 ,显示的结果是输入数据的累计个数;DATA(3)按 即可直接得出结果2分别计算从甲、丙两厂抽取的 20 只鸡腿质量的方差根据计算结果,你认为哪家的产品更符合要求?通过用计算器能计算出甲、丙两厂抽取的 20 只鸡腿的方差,得出方差较小的甲厂的产品更符合要求四、练习巩固教材第 151 页“随堂练习” 学生在正确计算出两队的方差后,可判断出方差较小

26、的仪仗队更为整齐五、小结本课主要学习了用方差与标准差表示出一组数据与其平均值的离散程度,即稳定性方差越小,稳定性越好注意:用先平均,再求差,然后平方,最后再平均得到方差的结果六、课外作业教材第 151152 页习题 6.5 第 1,2,3 题方差与标准差都是用来衡量一个样本波动大小的统计量,对一组数据的变化情况起着至关重要的作用因此,在教学中,对于如何引入这两个基本概念可采用灵活多变的方法,切忌将这些概念与公式直接教给学生要让学生在体会仅有平均水平还难以准确地刻画一组数据时,使学生的现有知识与现实矛盾产生碰撞而产生一种急于解决问题的心情,从而探索出这两个概念,使学生在解决实际问题的过程中认识到

27、“波动状况”的意义和影响,形成一定的统计意识和解决问题的能力,进一步体会数学的应用价值第 2 课时 数据的离散程度的应用1进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题作出判断2经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题的能力3通过解决现实情境中的问题,提高学生数学统计的能力,用数学的眼光看世界通过小组活动,培养学生的合作意识和交流能力重点进一步了解极差、方差、标准差,会对实际问题作出判断难点根据极差、方差、标准差的大小对实际问题作出解释,发展解决问题的能力一、复习导入1什么是极差、

28、方差、标准差?方差的计算公式是什么?一组数据的方差与这组数据的波动有怎样的关系?2计算下列两组数据的方差与标准差:(1)1,2,3,4,5;(2)103 ,102,98,101,99.二、探究新知课件出示教材第 152 页图 67,提出问题:(1)不进行计算,说说 A,B 两地这一天气温的特点(2)这一天 A,B 两地的平均气温分别是多少?(3)A 地这一天气温的极差、方差分别是多少?B 地呢?通过两地气温的变化的例子,培养学生从统计图中读取信息、分析数据的能力,更准确地理解方差及其在现实生活中的应用三、举例分析师:我们知道,一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组

29、数据越好呢? 我们通过实例来探讨1课件出示教材第 153 页“议一议” 注意事项:学生对两名运动员特点的回答呈多样性,如甲较稳定、乙有潜力等,对于第(4)题的回答则有不同的意见,经大家分析后,再统一认识2课件出示教材第 153 页“做一做” 注意事项:本次实验的安静环境和吵闹环境可以在教室里营造,让学生亲自经历这两种环境下的统计过程从而达到认识是很重要的四、练习巩固1教材第 153 页“随堂练习” 2某校从甲、乙两名优秀选手中选一名参加全市中学生田径百米比赛(100 米记录为12.2 秒,通常情况下成绩为 12.5 秒可获冠军)该校预先对这两名选手测试了 8 次,测试成绩如下表:1 2 3 4

30、 5 6 7 8选手甲的成绩(秒)12.1 12.4 12.8 12.5 13 12.6 12.4 12.2选手乙的成绩(秒)12 11.9 12.8 13 13.2 12.8 11.8 12.5根据测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?注意事项:在正确计算出两位选手的方差后,比较了两位选手的特点,由学生得出正确的结论,提高认识五、小结师:在本节课的学习中,你对方差的大小有什么新的认识?(学生交流,教师点拨,达成共识)新认识:方差越小表示这组数据越稳定,但不是方差越小就表示这组数据越好,而是对具体的情况进行具体分析才能得出正确的结论六、课外作业1阅读教材

31、第 154 页“读一读” ,并利用计算机上 Excel 软件求平均数、中位数和众数2教材第 155156 页习题 6.6 第 14 题从传统的观念看来,方差(标准差 )是越小越好,但在现实生活中往往会出现不一定是方差( 标准差) 越小越好的情况,在某一时段的测试中,有的会出现尽管方差很大 ,但数据会出现稳步上升(如某学生的考试成绩 )或逐步下降(如某运动员的百米赛跑的成绩)的情况,此时,我们不能简单地将方差小的数据就认为数据好,只能认为它是稳定的对于学生在评判某一组数据时,会有不同的看法,教师要以鼓励为主,注重定性的评价方法,及时记录学生的独特想法,然后再分析其中存在的误区,不要简单地进行肯定或否定让学生亲自经历统计过程,通过独立思考、合作探究从而达到新认识是很重要的

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 八年级上册