中考二次函数利润问题汇编
-2 分(2)对称轴为直线 2x;顶点的纵坐标为 a.-4 分(3) (i)当 0 时 ,依题意, -23.a ,解得 .(ii)当 0a 时 ,依题意, -23. ,解得 a -.综上, 2 ,或 3a . -7 分西城区26.在平面直角坐标系 xOy中,抛物线 G:21(0)ymx与 y轴交于点
中考二次函数利润问题汇编Tag内容描述:1、2 分(2)对称轴为直线 2x;顶点的纵坐标为 a.-4 分(3) (i)当 0 时 ,依题意, -23.a ,解得 .(ii)当 0a 时 ,依题意, -23. ,解得 a -.综上, 2 ,或 3a . -7 分西城区26.在平面直角坐标系 xOy中,抛物线 G:21(0)ymx与 y轴交于点 C,抛物线 G的顶点为 D,直线: 1(0)(1)当 m时,画出直线和抛物线 ,并直接写出直线被抛物线 G截得的线段长(2)随着 取值的变化,判断点 C, 是否都在直线上并说明理由(3)若直线被抛物线 G截得的线段长不小于 2,结合函数的图象,直接写出 m的取值范围O xy11【解析】 (1)当 m时,抛物线 G的函数表达式为2yx,直线的函数表达式为yx,直线被抛物线 截得的线段长为 2,画出的两个函数的图象如图所示:y=xy=x2+xO(C) xyD(2)抛物线 G:21(0)ymx与。2、x-2)2-2,该函数在-1x3的取值范围内,当x=2时,y有最小值-2;当x=-1时,y有最大值7故选D.2(2019绍兴 )在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是 ( )A.向左平移2个单位 B.向右平移2个单位 C.向左平移8个单位 D.向右平移8个单位【答案】B【解析】y(x+5)(x3)(x+1)216,顶点坐标是(1,16)y(x+3)(x5)(x1)216,顶点坐标是(1,16)所以将抛物线y(x+5)(x3)向右平移2个单位长度得到抛物线y(x+3)(x5),故选B3(2019嘉兴)小飞研究二次函数y(xm)2m+1(m为常数)性质时如下结论:这个函数图象的顶点始终在直线yx+1上;存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1+x22m,则y1y2;当。3、点(m,n是实数),当0 x1x21时,求证:0mn.(1)解:乙求得的结果不正确理由如下:当x0时,y0;当x1时,y0,二次函数的图象经过点(0,0),(1,0),x10,x21,yx(x1)x2x,当x时,y,乙求得的结果不正确(2)解:对称轴为直线x,当x时,二次函数的最小值为y(x1)(x2).(3)证明:二次函数的图象经过(0,m)和(1,n)两点,mx1x2,n(1x1)(1x2),mnx1x2(1x1)(1x2)(x1x)(x2x)(x1)2(x2)20 x1x21,0(x1)2,0(x2)2,0mn,x1x2,0mn.2(2019莆田质检)函数y1kx2axa的图象与x轴交于点A,B(点A在点B的左侧),函数y2kx2bxb的图象与x轴交于点C,D(点C在点D的左侧),其。4、 N 的坐标;若不存在,请说明理由 例 2 如图,抛物线的图象经过点 A(2,0) ,点 B(4,0) ,点 D(2,4) ,与 y 轴交于点 C,作直线 BC,连接 AC,CD 来源:Z。xx。k.Com (1)求抛物线的函数表达式; (2)E 是抛物线上的点,求满足ECD=ACO 的点 E 的坐标; (3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点 C, M,N,P 为顶点的四边形是菱形,求菱形的边长 例 3 如图,已知点 A (2,4) 和点 B (1,0)都在抛物线 2 ymx2mx n上. 2 (1)求 m、n; (2)向右平移上述抛物线,记平移后点 A 的对应点为 A,点 B 的对应点为 B,若四边形 A ABB 为菱形, 求平移后抛物线的表达式; (3)记平移后抛物线的对称轴与直线 AB 的交点为 C,试在 x 轴上找一个点 D,使得以点 B、C、D 为顶 点的三角形与ABC 相似. 例 4 如图,在平面直角坐标系中,已知抛物线与 轴交于 O 点、A 点,B 为抛物线上一。5、二次函数为背景 的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内 容。解答要点是结合相关知识,对于已知条件进行数形结合。容。解答要点是结合相关知识,对于已知条件进行数形结合。【典例示范】【典例示范】 类型一类型一 圆的基本性质应用圆的基本性质应用 例例 1:(2018-2019 学年湖南省长沙市天心区)如图,在直角坐标系中,抛物线 y=a(x-5 2) 2+9 8与M 交于 A, B,C,D 四点,点 A,B 在 x 轴上,点 C 坐标为(0,-2) (1)求 a 值及 A,B 两点坐标; (2)点 P(m,n)是抛物线上的动点,当CPD 为锐角时,请求出 m 的取值范围; (3)点 E 是抛物线的顶点,M 沿 CD 所在直线平移,点 C,D 的对应点分别为点 C,D,顺次连接 A, C,D,E 四点,四边形 ACDE(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心 M的坐标;若不存在,请说明理由 针对训练针对训练 1(江苏省无。6、2020 年江苏省中考数学试题分类(年江苏省中考数学试题分类(4)二次函数二次函数 一二次函数的性质(共一二次函数的性质(共 4 小题)小题) 1 (2020镇江)点 P(m,n)在以 y 轴为对称轴的二次函数 yx2+ax+4 的图象上则 mn 的最大值等于 ( ) A15 4 B4 C 15 4 D 17 4 2 (2020无锡)请写出一个函数表达式,使其图象的对称轴为 y 轴: 3 (。7、 1 2020 年中考数学试题分类汇编之十三 二次函数 一、选择题 10 (2020 安徽) (4 分) 如图,ABC和DEF都是边长为 2 的等边三角形, 它们的边BC, EF在同一条直线l上,点C,E重合现将ABC在直线l向右移动,直至点B与F重合 时停止移动在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y 随x变化的函数图象大致为( ) A B C D 【解答】解:如。8、圆的基本知识、与则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与 圆有关的位置关系、构造圆和隐形圆为考察内容。解答要点是结合相关知识,对于已知条件圆有关的位置关系、构造圆和隐形圆为考察内容。解答要点是结合相关知识,对于已知条件 进行数形结合。进行数形结合。【典例示范】【典例示范】 类型一类型一 圆的基本性质应用圆的基本性质应用 例例 1:(2018-2019 学年湖南省长沙市天心区)如图,在直角坐标系中,抛物线 y=a(x- 5 2) 2+9 8与M 交于 A, B,C,D 四点,点 A,B 在 x 轴上,点 C 坐标为(0,-2) (1)求 a 值及 A,B 两点坐标; (2)点 P(m,n)是抛物线上的动点,当CPD 为锐角时,请求出 m 的取值范围; (3)点 E 是抛物线的顶点,M 沿 CD 所在直线平移,点 C,D 的对应点分别为点 C,D,顺次连接 A, C,D,E 四点,四边形 ACDE(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心 M的坐标;若不存在,请说明理由 【答案】 (1)A(1,0)。9、的顶点坐标; 解题思路 将一般式化为顶点式即可得到顶点坐标 【解答】ymx22mxm1m(x1)21, 抛物线的顶点坐标为(1,1),例,典例精析,常考题型 精讲,3,(2)若抛物线经过点(3,5),求抛物线的解析式; 解题思路 将点(3,5)代入到抛物线解析式得到m的值即可,4,(3)试说明抛物线与直线有两个交点; 解题思路 由ymx22mxm1和ymxm1可得mx22mxm1mxm1,整理,得mx(x1)0,即可知抛物线与直线有两个交点 【解答】由ymx22mxm1和ymxm1 可得mx22mxm1mxm1, 整理得mx2mx0,即mx(x1)0. m0,x10,x21, 抛物线与直线有两个交点,5,(4)若抛物线与直线相交于点M,N,且m3,则抛物线的对称轴上是否存在一点G,使得MNG为直角三角形?若存在,求出点G的坐标;若不存在,请说明理由 解题思路 若MNG为直角三角形,则分三种情况: MGN90; MNG。10、问题情景。动点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无 速度动点和有速度动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。速度动点和有速度动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。【典例示范】【典例示范】 类型一类型一 常规单动点问题常规单动点问题 例例 1 1: (广东省深圳市)已知二次函数y=ax 2+bx+3 的图象分别与 x轴交于点A(3,0) ,C(-1,0) ,与y轴 交于点B点D为二次函数图象的顶点 (1)如图所示,求此二次函数的关系式: (2)如图所示,在x轴上取一动点P(m,0) ,且 1m3,过点P作x轴的垂线分别交二次函数图象、 线段AD,AB于点Q、F,E,求证:EF=EP; 例例 2 2: (2019 年广西)如图,抛物线y=x 2-2x-3 与 x轴交于A,B两点,与y轴交于点C,其对称轴与抛物线 相交于点M,与x轴相交于点N,点P是线段MN上的一个动点,连接CP,过点P作PECP交x轴于点E (1)求抛物线的顶点M的坐标; (2)当点E与原点O的重合时,求点P的坐标。11、Q在直线 xy上,且在第一象限内,直线 mxy与 y轴的交点为点 D,如果 DO,求点 的坐标.24.解:(1) 直线 mxy的经过点 )0,4(A 041 分 1 分直线 xy的经过点 )3,(nB 3n1 分 11 分(2)由可知点 B的坐标为 ),1(抛物线 cbxy2经过点 A、 B 31046c b, 8抛物线 cbxy2的表达式为 862xy1 分抛物线 6的顶点坐标为 )1,3(P1 分 3AB, P, 5B 22 901 分图 7O xy PBAsin 10 1 分(3)过点 Q作 xH轴,垂足为点 H,则 Q y轴 DOA, BO B 1 分直线 4xy与 y轴的交点为点 D点 的坐标为 ),0(, 4又 1OB, 2 5Q, 1 分 3A 8, 4D。12、符号的确定【解答】解:对称轴位于x轴的右侧,则a,b异号,即ab0抛物线与y轴交于正半轴,则c0abc0故正确;抛物线开口向下,a0抛物线的对称轴为直线x1,b2ax1时,y0,ab+c0,而b2a,c3a,bc2a+3aa0,即bc,故正确;x1时,y0,ab+c0,而b2a,c3a,3a+c0故正确;由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0)当y0时,1x3故正确综上所述,正确的结论有4个故选:D2. (2019年天津市)二次函数是常数,)的自变量x与函数值y的部分对应值如下表:且当x=时,与其对应的函数值,有下列结论:; - 2和3是关于x的方程的两个根;。其中,正确结论的个数是( )A.0 B.1 C. 2 D.3【考点】二。13、 D. 向右平移 2 个单位,向上平移 1 个单位 2.已知(-3,y1),(-2,y2),(1,y3)是抛物线 y=-3x2-12x+m 上的点,则( ) A. y30)的图象与 x 轴交于 A,B 两点,与 y 轴正半轴交于点 C, 它的对称轴为直线 x=-1.则下列选项中正确的是( ) A. B. C. D. 当 (n 为实数)时, 21 cn jy com 二、综合题二、综合题 6.如图 1,在平面直角坐标系中, ABC 的顶点 A,C 分别是直线 y= x+4 与坐标轴的交点, 点 B 的坐标为(-2,0) 。点 D 是边 AC 上的一点,DEBC 于点 E,点 F 在边 AB 上,且 D,F 两 点关于 y 轴上的某点成中心对称,连结 DF,EF。设点 D 的横坐标为 m,EF2为 l,请探究: 线段 EF 长度是否有最小值。BEF 能否成为直角三角形。小明尝试用“观察-猜想-验证-应用”的方法进行探究,请你一起来解决问题。(1)小明利用“几何画板”软件进行观察,测量,得到 。14、动点和有速度点的呈现方式从动点个数往往有单动点或双动点,从运动呈现方式分为无速度动点和有速度 动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。动点,从动点的引起的变化分为单个动点变化和以动点驱动的图形运动。【典例示范】【典例示范】 类型一类型一 常规常规单动点问题单动点问题 例例 1: (广东省深圳市)已知二次函数 y=ax2+bx+3 的图象分别与 x 轴交于点 A(3,0) ,C(-1,0) ,与 y 轴交于点 B点 D 为二次函数图象的顶点 (1)如图所示,求此二次函数的关系式: (2)如图所示,在 x 轴上取一动点 P(m,0) ,且 1m3,过点 P 作 x 轴的垂线分别交二次函数图象、 线段 AD,AB 于点 Q、F,E,求证:EF=EP; (3)在图中,若 R 为 y 轴上的一个动点,连接 AR,则 10 10 BR+AR 的最小值_(直接写出结果) 【答案】 (1)y=-x2+2x+3; (2)见解析; (3)610 5 【解析】 解: (1)将 A(3,0) ,C(-1,0)代入 y=ax2+bx+3,得: 9。15、1,0) ,顶点坐标(1,n)与 轴的交点=2+在(0,2) , (0,3)之间(包 含端点) ,则下列结论: ; ;对于3+0 2+=3轴的另一个交点坐标为 ; 若点 在该抛物线上,(2,0) (,)则 其中正确的有 )A5 个 B4 个 C3 个 D2 个13如图,抛物线 与 x 轴交于点 A、B,把抛物线在 x 轴及其下方的部分=1227+452记作 ,将 向左平移得到 , 与 x 轴交于点 B、D,若直线 与 、 共有 31 1 2 2=12+ 1 2个不同的交点,则 m 的取值范围是 ( )A B C D458。16、x521ky1)(2故函数与坐标轴仅有一个交点;(2)解: ,)21kxy函数 的顶点坐标为( ,) ,k代入函数 得( ) ,32kxy解得 或 ,3 或 ;25)1(21xxy 325)1(21xxy(3)解:当对称轴 时, ,abkk当 时,取最小值 ,x即 ,化简得 ,254)21kk 02k解得 (舍去)或 ;当对称轴 时, ,kk当 时,最小值恒为 ,故无解;xk当对称轴 时, ,k当 时,取最小值 ,x即 ,化简得 ,254)269kk 02k解得 (舍去)或 综上所述, 的值为 或 k2.已知二次函数 ( ) ,其中 .)(21xay0a21x(1)若 , , ,求二次函数顶点坐标;1ax42(2)若 ,当 时, , 时, ,且 ( 为20y3x0ynxm2相邻整数) ,求 的值;nm(3)在(2)的条件下,已知点 , 均在抛物线上,试比较。17、数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到 函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的 自变量取值范围,解答自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。【典例示范】【典例示范】 类型一常规盈利问题类型一常规盈利问题 例例 1:(2019 湖北宜昌)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过 程下面的二次函数图象(部分)刻画了该公司年初以来累积利润 (万元)与销售时间 (月)之间的关系 (即前 个月的利润总和 和 之间的关系) 根据图象提供的信息,解答下列问题: 由已知图象上的三点坐标,求累积利润 (万元)。18、方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到 函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的函数的最值或在一定自变量范围内函数值的最值;再次通常考察利润在一定范围内时对应的 自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。自变量取值范围,解答方法通常采用通过数形结合思想,画出函数图象根据题意找到答案。【典例示范】【典例示范】 类型一常规盈利问题类型一常规盈利问题 例例 1:(2019 湖北宜昌)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过 程下面的二次函数图象(部分)刻画了该公司年初以来累积利润 (万元)与销售时间 (月)之间的关系 (即前 个月的利润总和 和 之间的关系) 根据图象提供的信息,解答下列问题: 由已知图象上的三点坐标,求累积利润 (万元)与时间 (月)之间的函数关系式; 求截止到几月末公司累积利润可达到万元; 求第 个月公司所获利润是多少万元? 【答案】 (1); (2)截止到月末公司累积利润可达万元; (3。19、 B.y=(11-x)(50+10 x)C.y=(2-x)(50+10 x) D.y=(11-x)(50+x)2.将进价为70元个的某种商品按销售单价100元个售出时,每天能卖出20个.若这种商品的销售单价在一定范围内每降低1元,其日销量就增加1个,为了获取最大利润应降价()A.20元 B.15元 C.10元 D.5元3.已知商场某商品的进价为每件40元,现在的销售单价是60元件,一周内可卖出300件.市场调查反映:售价每件每涨价1元,一周内要少卖出10件商品.设售价每件涨价x元,当x=时,商场能在一周内获得最大利润.4.教材例题变式 某超市销售一种品牌的牛奶,进价为每箱24元,规定售价不低于进价.当售价为每箱36元时,每月可销售60箱.经市场调查发现,这种品牌牛奶的售价每箱每降低1元,每月的销售量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销售量为y箱.(1)写出y与x之间的函数表达式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶获得。20、题:压轴题分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到OCD的面积S=,再根据kS+32=0,及b0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1x2)2+(y1y2)2,由(2)得y1y2=64,又易得x1x2=64,则OA2+OB2=AB2,根据勾股定理的逆定理得出AOB=90再过点A作AEx轴于点E,过点B作BFx轴于点F,根据两角对应相等的两三角形相似证明AEOOFB,由相似三角形对应边成比例得到=,即可证明x1OB+y2OA=0解答:(1)解:直线y=kx+b(b0)与x轴正半轴相交于点D,与y。