3.2 中位数和众数,创设情景,提出问题,招聘启事本公司需要招聘技术员一人, 有意者请来公司面试。本山公司人事部,赵经理,应聘者小范,第二天,小范上班了。,职员C,职员D,小范在公司工作了一周后,下表是该公司月工资报表:,请大家仔细观察表中的数据,讨论该公司员工的月平均工资是多少? 经理是否欺骗了小
浙教版数学八年级下册 5.2菱形1课件1Tag内容描述:
1、3.2 中位数和众数,创设情景,提出问题,招聘启事本公司需要招聘技术员一人, 有意者请来公司面试。本山公司人事部,赵经理,应聘者小范,第二天,小范上班了。,职员C,职员D,小范在公司工作了一周后,下表是该公司月工资报表:,请大家仔细观察表中的数据,讨论该公司员工的月平均工资是多少? 经理是否欺骗了小范?,平均月工资能否客观地反映员工的实际收入?,(3) 你认为用什么数据反映一般技术员的实际收入比较合适,请说明理由。,中位数定义:,众数的定义:,在一组数据中,出现次数最多的数据叫做这组数据的众数。,如上表中的1200,将一组数据按大小。
2、19.3.2 菱形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.,。
3、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩。
4、,4.3中心对称,风车是我们小时候常见的玩具,请观察下面的图形是不是我们以前学过的轴对称图形?若是请画出它的对称轴.,它是轴对称图形吗?,问题:这幅图片是否能够通过某种图形 运动与自身重合呢?,如图1,点O是正三角形ABC的两条高线的交点,以点O为旋转中心,把三角形逆时针旋转180,作出所得的像.如图2,点O是平行四边形ABCD对角线AC、BD的交点,以点O为旋转中心,把平行四边形ABCD逆时针旋转180,作出所得的像.,图1,图2,合作学习,你发现了什么?观察旋转180前后原图形和像的位置情况.,新知识,如果一个图形绕着一个点旋转180,所得到的图。
5、6.1 反比例函数,情景创设,(一)一个长方形的宽是2,长为3,那么它的面积是多少?长为4,那么它的面积是多少?随着长的长度增加,长方形的面积会怎样?,长方形的宽一定,面积与长成正比例。,这里的x,y可以表示单项式也可以是多项式,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.,活动一,对于x,s两个变量,给定变量 x 的值,变量 s 都有唯一确定的值与它对应吗?,例如:1、圆柱的底面积是10,体积v与高度h的函数关系式2、有6。
6、3.1平均数,在小学我们就知道平均数,小明有12本书,小军有20本书,小明和小军平均每人有几本书?,二(3)班做好事36件,二(4)班做好事28件,二(5)班做好事29件,平均每个班做好事多少件?,如何求平均数?,看!姚明的出色表现!,看谁算得快!,姚明的十场比赛平均得分为,29.8(分),看谁算得快!,姚明的十场比赛平均篮板为,12.8(个),合作学习,某果农种植的100棵苹果树即将收获.果品公司在付给果农定金前,需要对这些果树的苹果总产量进行估计.,(1)果农任意摘下20个苹果,称得这20个苹果的总质量为4千克.这20个苹果的平均质量是多少千克?,420=。
7、5.3 正方形(2)正方形的性质,知识回顾,有一个角是直角,一组邻边相等,一组邻边相等,有一个角是直角,一组邻边相等且一个角是直角,1.掌握正方形的性质定理 2.会综合运用正方形的性质定理和判定定理来解决问题。,学习目标,自学指导,阅读课本P.126-至例2前为止,思考并准备回答下列问题: 1.小组从边、角、对角线、整体图形议一议有哪些性质? 2.正方形的一条对角线把正方形分成什么图形?因而,正方形问题 转化为什么问题来解决?5分钟后比一比谁的自学效果好!,边: 对边平行四边相等角 :四个角都是直角,对角线: 相等互相垂直平分每条对角线平。
8、5.1 多 边 形(1),由这些图片你抽象出什么几何图形?,大家说说怎样的图形是四边形?,四边形定义:在同一平面内,不在同一条直线上的四条线段首尾顺次相接形成的图形。,凸四边形,凹四边形,温馨提示:我们现在所学的是凸多边形,即多边形的各边都在任意一条边所在直线的同一侧。,合作学习,在一张纸上任意画一个四边形,剪下它的四个角, 把它们拼在一起(四个角的顶点重合).你发现了什么? 其他同学与你的发现相同吗?,一般地,四边形有以下的定理:四边形的内角和等于3600.学.科.网zxxk.组卷网,你能把你的发现概括成一个命题吗?,已知:四边形ABCD。
9、4.1多边形(1),由上述这些图形,你能 抽象出什么几何图形?,三角形,四边形,六边形,八边形,生 活 中 的 四 边 形,想一想,比一比,四边形,由不在同一条直线上的三条线段首尾顺次相接形成的图形叫三角形,四边形,三角形,由不在同一条直线上的四条线段首尾顺次相接 形成的图形,叫做四边形(quadrilateral),定义,凸四边形,凹四边形,注:本套教科书所说的四边形等多边形,都指凸多边形,即多边形的各条边都在任意一条边所在直线的同一侧,四边形的各条边都在任意 一条边所在直线的同一侧,四边形的各条边不都在任意一条边所在直线的同一侧,凸四边。
10、路边苦李,王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.有人问王戎为什么?,王戎回答说:“树在道边而多子,此必苦李.” 小伙伴摘取一个尝了一下果然是苦李.,王戎是怎样知道李子是苦的呢?他运用了怎样的推理方法?,4.6反证法,假设李子是甜的,那么李子会被过路人摘去解渴,树上的李子会很少。,事实上树上的李子很多,这与事实相矛盾。,造成矛盾的原因是:假设李子是甜的,这个假设是错误的,说明原来的结论:路边的李子是苦的是正确的。,如图,在三角形ABC中,AB=c,BC =a,AC =b。
11、5.1矩形(1),八年级数学下册,Q1:六根火柴棒所围成的平行四边形的形状是 唯一的吗?,Q2:你能拼出面积最大的平行四边形吗? 这时它的面积是多少?,它们有什么共同特点?,其实我还是平行四边形啊!只是我比较特殊而已,大家发现了我的特殊之处吗?,A DB C,矩形:,木门,纸张,电脑显示器,有一个角是直角的平行四边形。,实质上:矩形是特殊的平行四边形。,特殊,思考:有一个角是直角的四边形是矩形吗?,矩形的性质的研究,我们已经知道矩形是特殊的平行四边形,因此矩形除具有平行四边形的性质外,还有它的特殊性质.你能说出矩形有哪些性质吗?,E 。,五、。
12、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第5章 特殊平行四边形 5.2 菱形(1),菱形具有工整,匀称,美观等许多优点,常被人们用在图案设计上.,三菱越野汽车欣赏,合作学习:,观察以下由火柴棒摆成的图形:,议一议:(1)三个图形都是平行四边形吗?,(2)与图1相比,图2与图3有什么共同特点?,一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的定义,菱形,由于平行四边形的对边相等,而菱形的邻边相等,因此:,性质定理1:菱形的四条边都相等。,菱形是特殊的平行四边形,具有平行四边形的所有性质.,菱形的性质研究,菱形的两条对角线互。
13、5.2 菱形(2)A 练就好基础 基础达标1如图所示,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是( C )AABCD BADBCCAB BC DACBD第 1 题图第 3 题图2符合下列条件之一的四边形不一定是菱形的是( B )A四条边相等B两组邻边分别相等C对角线相互垂直平分D两条对角线分别平分一组对角 3如图所示,已知四边形 ABCD 的对角线互相垂直,若适当添加一个条件,就能判定该四边形是菱形,则这个条件可以是( D )ABABC BACBDCAB CD DAC,BD 互相平分 4如图所示,在 ABCD 中,对角线 AC,BD 相交于点 O,添加下列条件不能判定ABCD 是菱形的只有( C )AACB。
14、复习与回顾:,想一想: 1.菱形、矩形的定义? 2.它们分别比平行四边形多了哪些性质? 3.怎样判定一个四边形是矩形?,矩形与菱形,有一角是直角的平行四边形叫做矩形.,有一组邻边相等的平行四边形叫做菱形.,平行四边形的性质,性质,边,角,对角线,四个角都是直角,相等,互相垂直且平分每一组对角,判定,有一角是直角的平行四边形,对角线相等的平行四边形,三个角都是直角的四边形,四条边都相等,5.2 菱形(2),想一想,同学们想一想,我们在学习平行四边形的判定和矩形的判定时,我们首先想到的第一种方法是什么?那么类比着它们,菱形的第一种判定。
15、-高 斯,生活是数学的源泉, 探索是数学的生命线!,特殊的平行四边形-5.2菱形(1),凤桥镇中学 许起琴 (15年3月),合作学习,你有几种拼法呢?,拼法一:将一腰重合,拼法二:将底重合,菱形定义,菱形就在我们身边,菱形就在我们身边,菱形就在我们身边,菱形就在我们身边,合作探究,从菱形定义的描述你知道菱形具有怎样的性质吗?你准备从哪些方面展开研究?,菱形是特殊的平行四边形,它具有平行四边形的所有性质,对边平行,四条边都相等,对角线互相垂直平分,且 每条对角线平分一组对角,菱形性质,菱形还具有哪些特殊的性质呢?,对称性-中心对称图形;,既。
16、5.2 菱形(2),(1)菱形的定义是什么?,(2)菱形有哪些性质?,(3)判定一个四边形是不是菱形可根据什么?,(4)菱形还有其他判定方法吗?,回 顾,定义法,一组邻边相等的平行四边形叫做菱形,1.具有平行四边形的一切性质。,2.菱形本身具有的特殊性质:四条边相等, 两条对角线互相垂直平分, 每一条对角线平分一组对角.,课前热身:,1.(1)已知菱形ABCD的边长为4, DAB=60,则对角线AC=_,BD=_,面积S菱形ABCD=_.,(2)已知菱形ABCD的两条对角线长分别为2cm, cm,则菱形ABCD的边长为_cm.,2.已知点E为菱形ABCD的一条对角线AC上的任意一点,连结BE并延长交。
17、5.2 菱形(1)A 练就好基础 基础达标)1如图所示,已知菱形 ABCD 的周长为 12,A60,则 BD 的长为( A )A3 B4 C6 D8第 1 题图 第 2 题图2如图所示,菱形 ABCD 的对角线 AC,BD 的长分别为 12 和 16,则此菱形的边长是( A )A10 B8 C6 D532018荆州菱形不具备的性质是 ( B )A四条边都相等B对角线一定相等C是轴对称图形D是中心对称图形42018淮安如图,菱形 ABCD 的对角线 AC,BD 的长分别为 6 和 8,则这个菱形的周长是( A )A20 B24C40 D485已知菱形的面积为 24 cm2,一条对角线长为 6 cm,则这个菱形的边长是( B ) A8 cm B5 cmC10 cm D4.8 cm6求。
18、5.2 菱 形(2),两组对边 分别平行,矩形,情景创设,我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,我们已经研究了一种特殊的平行四边形矩形 ;这堂课还要研究另一种特殊的平行四边形菱形,有一个角是直角,菱形,有一组邻边相等,平行四边形,邻边相等,菱形,在平行四边形中,如果内角大小保持不变,仅改变边的长度,请仔细观察和思考,在这变化过程中,哪些关系没变?哪些关系变了?,活动一,如果改变了边的长度,使两邻边相等,那么这个。
19、一起放飞理想的翅膀,在知识的天空中自由翱翔,5.2 菱形(1),学习目标,1掌握菱形的性质,学会运用菱形的性 质解决问题; 2.经历探索菱形的性质的过程,发展学生主动探索、研究的习惯; 3.在动手操作活动中获得成功的体验,并通过运用菱形的性质,锻炼克服困难的意志,建立自信心。,仔细看一看,在平行四边形中,如果内角大小保持不变仅改变边的长度,观察邻边的变化情况,你发现了什么?,平行四边形,菱形,画出菱形的两条折痕,并通过折叠(上下对折、左右对折)手中的图形,得到菱形有哪些平行四边形不具有的性质?从以下方面进行讨论:,1、对称。
20、5.2 菱形 (第一课时),矩形,有一个角是直角的平行四边形叫做矩形。,矩形是一个特殊的平行四边形,那么 还有其它的特殊的平行四边形吗?,激趣定标,学习目标,1、理解并掌握菱形的定义及性质;2、能够运用菱形性质解决具体问题。,一组邻边相等的平行四边形叫做菱形.,自学互动 适时点拨,感受,生活,“法兰西巡逻兵”飞行表演队称得上是世界最著名、同时也是世界最古老的飞行特技小组之一,他们的飞行秉承法国文化中固有的优雅风范,编排巧妙,它的飞行表演也并不在意是否雷霆万钧气势迫人,而是专注于芭蕾般的优美与法国击剑一样的敏捷和灵活。,。