湘教版八年级数学下册2.6菱形2.6.2菱形的判定课件

第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认

湘教版八年级数学下册2.6菱形2.6.2菱形的判定课件Tag内容描述:

1、第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认识,归纳出“有两个角互余的三角形是直角三角形”的结论,并运用此结论对三角形的形状进行判定 3通过实际测量,对比斜边上的中线、斜边的长度归纳出“直角三角形斜边上的中线等于斜边的一半”的性质,并能灵活应用此性质,目标突破,目标一 理解。

2、第1章 直角三角形,1.2 直角三角形的性质和判定(),第3课时 勾股定理的逆定理,目标突破,总结反思,第1章 直角三角形,知识目标,第3课时 勾股定理的逆定理,知识目标,1通过勾股定理的逆向思考、验证、归纳,掌握直角三角形的判定方法 2在弄清勾股定理及其逆定理的区别与联系的前提下,综合运用两个定理解决数学问题,目标突破,目标一 会用勾股定理的逆定理判定直角三角形,例1 教材例3 针对训练 已知ABC的三边长a,b,c满足下列条件,且A,B,C所对的边分别为a,b,c,试判断ABC的形状 (1)a25,b20,c15; (2)ap2q2,bp2q2,c2pq(pq0),第3课时 勾。

3、第1章 直角三角形,1.2 直角三角形的性质和判定(),第2课时 勾股定理的应用,目标突破,总结反思,第1章 直角三角形,知识目标,第2课时 勾股定理的应用,知识目标,1通过仿照“动脑筋”,建立直角三角形模型解决实际问题 2通过观察图形,结合转化思想,构造直角三角形应用勾股定理解决问题,目标突破,目标一 利用勾股定理解决实际问题,例1 教材“动脑筋”针对训练 如图124,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行多少米?,图124,第2课时 勾股定理的应用,解析根据“两点之间线段。

4、第1章 直角三角形,1.2 直角三角形的性质和判定(),第1课时 勾股定理,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 勾股定理,知识目标,1通过在方格纸中经历观察、计算、归纳发现勾股定理,会用拼图的方式验证勾股定理 2在理解勾股定理的基础上,会用勾股定理求图形的边长或面积,目标突破,目标一 会验证勾股定理,例1 教材补充例题 如图121是用硬纸板做成的两直角边长分别是a,b,斜边长为c的四个全等的直角三角形和一个边长为c的正方形,请你将它们拼成 一个能证明勾股定理的图形 (1)画出拼成的这个图形的示意图; (2)证明勾股定理,。

5、,第1章 直角三角形,1.1 直角三角形的性质和判定(),第1章 直角三角形,1.1 直角三角形的性质 和判定(),考场对接,例题1 如图1-1-14, 在 RtABC中, ACB=90, CD是 AB边上的高, 如果A=50, 则 DCB的度数为( ). A50 B45 C40 D25,题型一 利用直角三角形两锐角之间的关系求角度,考场对接,A,图1-1-14,锦囊妙计 直角三角形中的经典图形 在直角三角形中, 斜边上的高分直角所得的 两个锐角与原直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常见的基本图形, 在 解题中应用广泛. 如图1-1-15, B+A=90, A +ACD = 9 0, B =A C D . 同理 , A=BCD.,。

6、,第1章 直角三角形,1.2 直角三角形的性质和判定(),第1章 直角三角形,1.2 直角三角形的性质和判定(),考场对接,例题1 如图1-2-7所 示, 在ABC中, ADBC, 垂 足为D, B=60, C=45. (1)求BAC的度数; (2)若AC=2, 求AD的长.,题型一 利用勾股定理求边长,考场对接,解: (1)BAC=180-60-45=75. (2)ADBC, ADC是直角三角形. C=45, DAC=45, AD=DC. 在RtADC中, AD2 +DC2 =AC2 . AC=2, 2AD2 =4, AD2 =2, AD= .,锦囊妙计 特殊直角三角形三边的比例关系 (1)含30角的直角三角形(如图1-2-8)中, 三 边的比例关系为abc=1 2; (2)含45角的直角三角形 (如图1-2-9)中,。

7、,第1章 直角三角形,1.3 直角三角形全等的判定,第1章 直角三角形,1.3 直角三角形全等的判定,考场对接,例题1 如图1 - 3 - 6, A = B = 90, E是AB上一点, 且 AE=BC, 1=2, 那 么RtADE与 RtBEC全等吗?请说明理由.,题型一 直角三角形全等的判定,考场对接,解:全等. 理由如下: 1=2, DE=EC. A=B=90,AE=BC, RtADERtBEC(HL).,锦囊妙计 直角三角形全等的判定方法 直角三角形全等的判定方法最多, 共有 五种:SSS, SAS, ASA, AAS, HL. 其中前四 种是通法, 后一种是特法, 只适用于直角三 角形.,题型二 利用“HL”定理证明线段相等或角相等,例题2 如图1-。

8、9.4 矩形菱形正方形第 2 课时矩形的判定练习一、选择题1如图 K171,四边形 ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )图 K171A AB CD B AD BCC AB BC D AC BD2四边形 ABCD 的对角线 AC, BD 相交于点 O,下列不能判定它是矩形的条件是( )A AO CO, BO DO, AC BDB AB CD, AD BC, BAD90C ABC BCD ADCD AB CD, AB CD, AC BD3平面内一点到两条平行线的距离分别是 1 cm 和 3 cm,则这两条平行线间的距离为( )A1 cm B2 cmC3 cm D2 cm 或 4 cm图 K1724如图 K172,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE AD。

9、第2章 四边形,2.5 矩形,2.5.2 矩形的判定,目标突破,总结反思,第2章 四边形,知识目标,2.5 矩形,知识目标,1类比平行四边形的判定定理,从角、对角线的角度去探索矩形的判定定理 2理解矩形的判定定理,能综合应用矩形的判定与性质定理解决简单的计算与证明问题,目标突破,目标一 能利用矩形的判定定理证明、说理,2.5 矩形,例1 如图253,已知四边形ABCD是平行四边形,下列条件:ACBD;ABAD;12;ABBC.其中能说明ABCD是矩形的是_(填序号),图253,2.5 矩形,解析 根据矩形的判定定理,在已知图形是平行四边形的条件下,再添加一个角是直角或对角线。

10、19.3.2 菱形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩形.,。

11、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩。

12、9.4 矩形菱形正方形第 4 课时菱形的判定练习一、选择题1下列说法正确的是( )A对角线互相垂直的四边形是菱形B矩形的对角线互相垂直C一组对边平行的四边形是平行四边形D四边相等的四边形是菱形2如图 K191,将 ABC 沿 BC 方向平移得到 DCE,连接 AD,则下列条件能够判定四边形 ABCD 为菱形的是( )A AB BC B AC BCC B60 D ACB60图 K191图 K1923如图 K192,在 ABC 中,点 E, D, F 分别在边 AB, BC, CA 上,且DE CA, DF BA.下列四个结论中,不正确的是( )A四边形 AEDF 是平行四边形B如果 BAC90,那么四边形 AEDF 是矩形C如果 AD 平分 BAC,。

13、19.3.2 菱形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 矩形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,,四。

14、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,。

15、1课时作业(十九)2.6.1 菱形的性质 一、选择题12017益阳下列性质中菱形不一定具有的是( )A对角线互相平分 B对角线互相垂直C对角线相等 D既是轴对称图形又是中心对称图形22017衡阳菱形的两条对角线长分别是 12 和 16,则此菱形的边长是( )链 接 听 课 例 2归 纳 总 结A10 B8 C6 D532018宿迁如图 K191,菱形 ABCD 的对角线 AC,BD 相交于点 O,E 为 CD 的中点若菱形 ABCD 的周长为 16,BAD60,则OCE 的面积是 ( )链 接 听 课 例 3归 纳 总 结图 K191A. B2 C2 D43 34如图 K192,在菱形 ABCD 中,M,N 分别是边 BC,CD 上的点,且AMANMNAB,则C。

16、第2章 四边形,2.6 菱形,2.6.1 菱形的性质,目标突破,总结反思,第2章 四边形,知识目标,2.6 菱形,知识目标,1通过观察、思考、讨论,归纳出菱形的概念 2通过观察,从边、角、对角线及对称性四个方面综合理解菱形的性质,并加以应用,目标突破,目标一 理解菱形的概念,图261,菱形,2.6 菱形,2.6 菱形,【归纳总结】 菱形的概念 一组邻边相等的平行四边形叫作菱形,2.6 菱形,目标二 会应用菱形的性质解决问题,例2 教材补充例题 如图262,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且分别与边AD,BC交于点M,N. (1)请你判断OM和ON的数量关系,并说。

17、菱形的判定【基础练习】知识点 1 四条边都相等的四边形是菱形1如图 13,以点 O为圆心,一定长为半径画弧,与 OM,ON 分别交于点 A,B,再分别以点A,B 为圆心,以 OA长为半径画弧,两弧交于点 C,分别连接 AC,BC,则四边形 OACB一定是( )图 13A平行四边形 B菱形 C矩形 D不能确定2如图 14,已知ABC 中,ABAC,将ABC 沿边 BC翻折,得到的DBC 与原ABC 拼成四边形 ABDC,则能直接判定四边形 ABDC是菱形的依据是( )图 14A一组邻边相等的平行四边形是菱形B四条边都相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四。

18、1课时作业(二十)2.6.2 菱形的判定 一、选择题1如图 K201,在ABCD 中,AC 平分DAB,AB2,则ABCD 的周长为( )图 K201A4 B6 C8 D122如图 K202,已知ABC,ABAC,将ABC 沿边 BC 折叠,得到DBC,其与原三角形 ABC 拼成四边形 ABDC,则能直接判定四边形 ABDC 是菱形的依据是( )链 接 听 课 例 1归 纳 总 结图 K202A一组邻边相等的平行四边形是菱形 B四条边都相等的四边形是菱形 C对角线互相垂直的平行四边形是菱形 D对角线互相垂直平分的四边形是菱形32017河南如图 K203,在ABCD 中,对角线 AC,BD 相交于点 O,添加下列条件不能判定ABCD 是菱形。

19、菱形的判定教学目标:1理解和掌握菱形的判定方法;(重点)2合理利用菱形的判定方法进行论证和计算(难点)教学过程:一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形这是菱形的定义,我们可以根据定义来判定一个四边形是菱形除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线互相垂直平分;2四条边都相等;3每条对角线平分一组对角这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究探究点一:菱形的判定【类型一】 利用“有一组邻边相等的平行四边形是。

20、第2章 四边形,2.6 菱形,2.6.2 菱形的判定,目标突破,总结反思,第2章 四边形,知识目标,2.6 菱形,知识目标,1经过操作、思考、讨论,归纳总结出菱形的判定定理1(四条边都相等的四边形是菱形),并能应用 2通过画图、自学阅读、探究,能总结出菱形的判定定理2(对角线互相垂直的平行四边形是菱形),并会用其解决问题,目标突破,目标一 能应用菱形的判定定理1证明,2.6 菱形,例1 教材例2针对训练 如图265,在ABC中,ACB90,CDAB于点D,AE平分BAC,分别与BC,CD交于点E,F,EHAB于点H,连接FH.求证:四边形CFHE是菱形,图265,2.6 菱形,解析 思路一:可。

【湘教版八年级数学下册2.6菱】相关PPT文档
【湘教版八年级数学下册2.6菱】相关DOC文档
标签 > 湘教版八年级数学下册2.6菱形2.6.2菱形的判定课件[编号:120835]