一元一次方程应用 经济问题

专题十一一元一次方程的应用------行程与工程问题1.工作总量=,工作量=一元一次方程的应用__________________________________________________________________________________________一元一次方程的应用____

一元一次方程应用 经济问题Tag内容描述:

1、,“复兴号”高铁的速度是350 km/h,北京、上海两地相距1318 km,需要行驶 x 小时,则 350x = 1318,3.1.1 一元一次方程,你会用算术方法解决这个问题吗?列算式试试.,问题 一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地. A,B两地间的路程是多少?,如果设A,B两地相距x km,你能分别列式表示客车和卡车从A地到B地的行驶时间吗?,3.1.1 一元一次方程,解 设A,B两地间的路程是 x km,,客车从A地到B地的行驶时间可以表示为,卡车从A地到B地的行驶时间可以表。

2、5.3 一元一次方程的解法(1)1已知aa,则实数a等于( )A0B1C1D不确定2将方程3x52x1移项,正确的是( )A3x2x15 B3x2x51C3x2x15 D3x2x153将方程2x4(2x3)62(x1)去括号,正确的是( )A2x8x1262x2 B2x8x1262x1C2x8x362x2 D2x8x1262x24已知关于x的方程3x2a2的解是xa1,则a的值是( )A1B.C.D15小红买了8个莲蓬,付出50元,找回38元设每个莲蓬的价格为x元,则根据题意,列出方程为 6(1)方程x3x的解为x (2)若代数式3x2与互为倒数,则x (3)。

3、 第 4 讲浓度问题与经济问题内容概述实际生活中与浓度或经济有关的百分数应用题掌握浓度问题中溶液、溶质、浓度的概念,熟练处理两种溶液混合的问题掌握经济问题中成本、利润、利润率等概念,熟悉相关问题的计算,体会浓度问题与经济问题的联系和区别典型问题兴趣篇1在 200 克浓度为 15%的盐水中加入 50 克盐,这时盐水浓度变为多少?然后再加入 150 克水,浓度变为多少?最后又加入 200 克浓度为 8%的盐水,浓度变为多少?2(1)在 120 克浓度为 20%的盐水中加入多少克水,才能把它稀释成浓度为 10%的盐水?(2)在 900 克浓度为 20%的糖水中。

4、目录,例1,例2,例3,例4,例5,例6,例7,例8,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例11,例12,例13,【练习7】,目录,上一页,空白页,知识要点,一、浓度问题: 【注:】熟悉各个名词以及各个名词之间的关系: 溶质:被溶解的物质 溶剂:溶解溶质的液体 溶液:溶质和溶剂的混合物 公式:,目录,上一页,空白页,热身,百分数和小数互化: 0.38 = _ 7% = _ 1.06 = _ 54%=_ 2 = _ 0.8%=_ 0.375=_ 400%=_,目录,上一页,空白页,【例1】,(1)将10克糖溶入90克水,该糖水的浓度是多少? (2)一容器中装有的盐水溶液克,那。

5、第十八讲 经济问题 经济问题,就是与金钱交易、资本变化相关的应用题在学校里,同学们已经初步 了解了一些与经济有关的知识,学习了单价、数量、总价的概念,它们之间的联系是: 单价 数量总价在本讲中,我们将进一步学习与经济有关的问题 同学们先来看一个例子:商店进了一批篮球,一共 200 个买入时每个篮球花了 90 元,商店决定将每个篮球按 150 元卖出实际卖出篮球时打了 9 折,最后一共卖出 了 190 个 在这个例子中, 进货时90 元是单价, 200 个是数量, 进货一共花了90 20018000 元,这些是我们已经学过的经济学概念,下面补充一些。

6、 第三章 方程与方程组 第 7 课时 一元一次方程及应用 (60 分) 一、选择题(每题 5 分,共 25 分) 12020南充如果 6a1,那么a的值为( ) A6 B1 6 C6 D1 6 22019杭州已知九年级某班 30 位学生种树 72 棵,男生每人种 3 棵树,女生每人 种 2 棵树设男生有x人,则下列方程正确的是( ) A2x3(72x)30 B3x2(72x)30 C2x。

7、,导入新课,讲授新课,当堂练习,课堂小结,4 应用一元一次方程 打折销售,第五章 一元一次方程,1.准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系.(难点) 2.能利用一元一次方程解决简单的打折销售问题.(重点),清仓处理,跳楼价,5折酬宾,满200返100,导入新课,合作探究,1.进价100元的商品提价40%后,标价为_元,若按标价的。

8、,导入新课,讲授新课,当堂练习,课堂小结,6 应用一元一次方程 追赶小明,第五章 一元一次方程,1.学会利用线段图分析行程问题,寻找等量关系, 建立数学模型.(难点) 2.能利用行程中的速度、路程、时间之间的关系列 方程解应用题.(重点),模拟试验,小明和小华相距10米,他们同时出发,相向而行,小明每秒走3米,小华每秒走4米,他们能相遇吗?几秒钟可以相遇?,等量关系。

9、,导入新课,讲授新课,当堂练习,课堂小结,5 应用一元一次方程 “希望工程”义演,第五章 一元一次方程,1.借助表格准确分析问题中的数量关系,间接设未知数(重点) 2.正确找出等量关系,列出方程解决实际问题. (难点),导入新课,讲授新课,合作探究,某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款69500元,成人票与学生票各售出多少张?,成人。

10、,课时7 一元一次方程(组)及其应用,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 一元一次方程 (1)定义:只含有_个未知数,并且未知数的次数是_的整式方程叫做一元一次方程 (2)解一元一次方程的步骤: 去_;去_;移_;合并_;系数化为1. 温馨提示 解方程时,有些变形步骤可能用不到,并且也不一定按照自上而下的顺序,要根据方程的形式灵活安排求解步骤熟练后,步骤及检验还可以合并简化,夯实基本 知已知彼,2. 二元一次方程(组) (1)二元一次方程的定义:含有_未知数(元),并且含未知数的项的次数是_的整式方程 (2)二。

11、专题06 一元一次方程及其应用专题知识回顾 知识点1:一元一次方程的概念1.一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。要点诠释:一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程注意:方程要化为最简形式,且一次项系数不能为零。2.方程的解: 判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所。

12、专题06 一元一次方程及其应用专题知识回顾 知识点1:一元一次方程的概念1.一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a0)。要点诠释:一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程注意:方程要化为最简形式,且一次项系数不能为零。2.方程的解: 判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所。

13、一元一次方程及其应用基础知识过关1只含有未知数,并且未知数的次数都是,这样的方程叫做一元一次方程2等式的两边同时乘(或除以)一个的数,等式仍然成立3解一元一次方程的一般步骤:(1)(2)(3)(4)(5)4列一元一次方程解应用题的一般步骤:(1)(2)(3)(4)(5)(6)【中考真题】【2019襄阳】九章算术是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A5x457x3B5x+457x+3Cx+455=x+37Dx-455=x-3。

14、5.4 一元一次方程的应用(销售及储蓄问题)1小明以8折优惠价买了一双鞋子,节省了30元钱,那么他买鞋时,实际用了( )A100元B120元C150元D180元2某种商品提价10%后,欲恢复原价,则应降价( )A9%B10%C.%D.%3某商场将一种商品按标价的9折出售后,仍可获利10%,若此种商品的标价为33元,那么商品的进货价为( )A31元B30.2元C29.7元 D27元4小彬把1000元压岁钱按一年期的定期储蓄存入银行,若年利率为m%,则一年后小彬可得本息和(不计利息税)为( )A1000m%元B1000(1m%)元C1000(1m%)元D.元5小华的爸爸三年前为小华存了一份5000元的教育储蓄,今年到。

15、5.4 一元一次方程的应用(工程及产品配套问题)141人参加运土劳动,有30根扁担,安排多少人抬,多少人挑,可使扁担和人数相配不多不少?若设有x人挑土,则列出的方程是( )A2x(30x)41B.(41x)30Cx30D30x41x2某土建工程共动用15台挖运机械,每台机械每小时能挖土3 m3或运土2 m3.为了使挖土的工作和运土的工作同时结束,若设安排了x台机械挖土,则x应满足的方程是( )A2x3(15x)B3x2(15x)C152x3xD3x2x153某企业原来管理人员与营销人员的人数之比为32,总人数为180人,为了扩大市场,应从管理人员中抽调_人参加营销工作,才能使营销人员人数是管。

16、5.4 一元一次方程的应用(图形面积、体积问题)1要锻造一个直径为8 cm,高为4 cm的圆柱形毛坯,至少应截取直径为4 cm的圆钢的长为( )A12 cm B16 cm C24 cm D32 cm2一根铁丝刚好能围成一个长8 cm,宽6 cm的长方形,现把它围成一个圆圈,则这个圆圈的半径为( )A. cm B. cm C7 cm D14 cm3要锻造一个边长为50mm的立方体零件毛坯,需要取直径为100mm的圆钢长为 mm(结果用表示)4一个五位数,前三位数为a,后两位数为b,则这个五位数可以表示为 ;如果把后两位数b放在前三位数a前,组成的新的五位数为 5将一个底面直径为40 mm的圆柱体杯子装满水。

17、5.4 一元一次方程的应用(行程问题)1甲、乙两人练习赛跑,甲每秒跑7 m,乙每秒跑6.5 m,甲让乙先跑5 m,设x(s)后甲可以追上乙,则下面列出的方程不正确的是( )A7x6.5x5B7x56.5C7x6.5x5D6.5x7x52一架在无风情况下航速为1200 km/h的飞机逆风飞行一条长为x(km)的航线用了3 h,顺风飞行这条航线用了2 h,依题意可列方程12001200,这个方程表示的意义是( )A飞机往返一次的总时间不变B顺风和逆风的风速相等C顺风和逆风时,飞机的实际航速不变D顺风和逆风时,飞机的航线长不变3A,B两地相距20 km,甲、乙两人分别从A,B两地出发相向而行,甲的速。

18、一元一次方程的应用_1、通过观察、归纳得出等数学模型的思想。2、通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性。3、能够“找出实际问题中的已知数和求知数,分析它们之间的关系,高级求知数,列出方程表示问题中的相等立关系”,体会建立一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。1.利息。

19、一元一次方程的应用_1、通过观察、归纳得出等数学模型的思想。2、通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性。3、能够“找出实际问题中的已知数和求知数,分析它们之间的关系,高级求知数,列出方程表示问题中的相等立关系”,体会建立一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。1.利息。

20、 专题十一 一元一次方程的应用-行程与工程问题1. 工作总量= ,工作量= .2. 路程= ;船在水中航行,顺流速度= + ;逆流速度= - .3. 列一元一次方程解决实际问题的基本过程:4. 用方程解决实际问题的一般步骤: 审题 列方程 解方程 答题一、产品配套问题例 1 一张方桌由一个桌面和四条腿组成,如果 1 立方米料可制作方桌的桌面 50 个活制作 桌腿 300 条,现有 5 立方米木料,请设计一个方案,用多少木料做桌面,用多少木料 做桌腿,恰好配成方桌多少张?【思路点拨】要使桌面与桌腿配套,生产的桌面与桌腿的数量要满足一定的关系.解:设用 x。

【一元一次方程应用 经济问题】相关PPT文档
【一元一次方程应用 经济问题】相关DOC文档
标签 > 一元一次方程应用 经济问题[编号:39396]