新定义和阅读一、单选题1已知二次函数y=x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示)2020年高考理科数学函数的定义与性质题型归纳与训练2020年高考理科数学导数的定义与基础应用题型归纳与训练2020年高考文科数学
新定义题型Tag内容描述:
1、第十九讲定义新运算一、 定义新运算(1) 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。(2) 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。(3) 关键问题:正确理解定义的运算符号的意义。(4) 注意事项:新的运算不一定符合运算规律,特别注意运算顺序。每个新定义的运算符号只能在本题中使用。 我们学过的常用运算有:、等.如:235 236都是 2 和 3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运。
2、新定义和阅读理解型问题一、单选题1已知三角形的三边长分别为 a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元 50年)给出求其面积的海伦公式 S=,其中 p= ;我国南宋时期数学家秦九韶(约 1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式 S= ,若一个三角形的三边长分别为 2,3,4,则其面积是( )A B C D2在每个小正方形的边长为 1的网格图形中,每个小正方形的顶点称为格点从一个格点移动到与之相距 的另一个格点的运动称为一次跳马变换例如,在 44的正方形网格5图形中(如图 1)。
3、7正切函数71正切函数的定义72正切函数的图像与性质基础过关1已知sin tan 0,那么角是()A第一或第二象限角B第二或第三象限角C第三或第四象限角D第一或第四象限角解析若sin 0,tan 0,则在第二象限;若sin 0,tan 0,则在第三象限答案B2若已知角满足sin ,cos ,则tan ()A. B. C. D.解析由三角函数定义可知tan .答案B3函数f(x)tan,xR的最小正周期为()A.BC2D4解析由2,故选C.答案C4使函数y2tan x与ycos x同时为单调递增的区间是_解析由y2tan x与ycos x的图像知,同时为单调递增的区间为(2k,2k(kZ)和2k,2k)(kZ)答案(2k,2k(kZ)和2k,2k)(kZ。
4、32任意角的三角函数32.1任意角三角函数的定义(一)基础过关1有下列说法:终边相同的角的同名三角函数的值相等;终边不同的角的同名三角函数的值不等;若sin0,则是第一、二象限的角;若是第二象限的角,且P(x,y)是其终边上一点,则cos,其中正确的个数为()A0B1C2D3答案B解析只有正确2当为第二象限角时,的值是()A1 B0C2D2答案C解析为第二象限角,sin0,cos0.2.3角的终边经过点P(b,4)且cos,则b的值为()A3 B3C3D5答案A解析r,cos.b3.4若tanx0,且sinxcosx0,则角x的终边在()A第一象限B第二象限C第三象限D第四象限答案D解析tanx<。
5、3.2.1任意角三角函数的定义(二)基础过关1有三个命题:和的正弦线长度相等;和的正切线相同;和的余弦线长度相等其中正确说法的个数为()A1 B2C3D0答案C解析和的正弦线关于y轴对称,长度相等;和两角的正切线相同;和的余弦线长度相等故都正确,故选C.2利用正弦线比较sin1,sin1.2,sin1.5的大小关系是()Asin1sin1.2sin1.5Bsin1sin1.5sin1.2Csin1.5sin1.2sin1Dsin1.2sin1sin1.5答案C解析1,1.2,1.5均在内,正弦线在内随的增大而逐渐增大,sin1.5sin1.2sin1.3函数ytan的定义域为()A.B.C.D.答案C解析xk,kZ,xk,kZ.4设asin(1),bcos(1),ctan(。
6、32任意角的三角函数32.1任意角三角函数的定义(一)学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号知识链接在初中,我们已经学过锐角三角函数如图,在RtABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦,余弦,正切分别是什么?答锐角A的正弦,余弦,正切依次为:sinA,cosA,tanA.预习导引1三角函数的定义(1)正弦、余弦、正切如图,在的终边上任取一点P(x,y),设OPr(r0)定义:sin,cos,tan,分别称为角的正弦、余弦、正切依照上述定义,对于每一个确定的角,都分别有唯一确定的正弦值、余弦值与之对应:当a2。
7、3.2.1任意角三角函数的定义(二)学习目标1.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.2.能利用三角函数线解决一些简单的三角函数问题知识链接什么叫做单位圆?答以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)预习导引1三角函数的定义域正弦函数ysinx的定义域是R;余弦函数ycosx的定义域是R;正切函数ytanx的定义域是x|xR,且xk,kZ2三角函数线如图,设单位圆与x轴的正半轴交于点A,与角的终边交于P点过点P作x轴的垂线PM,垂足为M,过A作单位圆的切。
8、12任意角的三角函数12.1三角函数的定义基础过关1有下列说法:终边相同的角的同名三角函数的值相等;终边不同的角的同名三角函数的值不等;若sin0,则是第一、二象限的角;若是第二象限的角,且P(x,y)是其终边上一点,则cos,其中正确的个数为()A0 B1 C2 D3答案B解析只有正确2当为第二象限角时,的值是()A1 B0 C2 D2答案C解析为第二象限角,sin0,cos0.2.3角的终边经过点P(b,4)且cos,则b的值为()A3 B3C3 D5答案A解析r,cos.b3.4若tanx0,且sinxcosx0,则角x的终边在()A第一象限 B第二象限C第三象限 D第四象限答案D解析tanx0,角x。
9、1.2任意角的三角函数1.2.1三角函数的定义一、选择题1.已知sin 0,且tan 0,则为()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角答案D2.已知角的终边经过点(3a9,a2),且cos 0,sin 0,则实数a的取值范围是()A.(2,3 B.(2,3)C.2,3) D.2,3答案A解析由题意,得解得2a3,故选A.3.已知是第二象限角,P(x,)为其终边上一点,且cos x,则x的值为()A. B.C. D.答案D解析cos x,x0或2(x25)16,x0或x23,x0(是第二象限角,舍去)或x(舍去)或x.故选D.4.若是第四象限的角,则下列函数值一定是负值的是()A.sin B.cos C.sin cos D.以上均不正确答案C。
10、1.2任意角的三角函数1.2.1三角函数的定义学习目标1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.3.掌握正弦、余弦、正切函数的定义域.知识点一任意角的三角函数使锐角的顶点与原点O重合,始边与x轴的正半轴重合,在终边上任取一点P,作PMx轴于点M,设P(x,y),|OP|r.(1)定义叫做角的余弦,记作cos ,即cos ;叫做角的正弦,记作sin ,即sin ;叫做角的正切,记作tan ,即tan .依照上述定义,对于每一个确定的角,都分别有唯一确定的余弦值、正弦值与之对应;当k(kZ)时,它有唯一的正切值与之对应.因此这三个对应法则都是。
11、第二部分专题三1在平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为(m,n)已知(x1,y1),(x2,y2),若x1x2y1y20,则与互相垂直下面四组向量:(3,9),(1,);(2,0),(21,1);(cos30,tan45),(sin30,tan45);(2,),(2,)其中互相垂直的有(A)A1组B2组 C3组 D4组2阅读理解:a,b,c,d是实数,我们把符号称为22阶行列式,并且规定:adbc.例如:3(2)2(1)624,二元一次方程组的解可以利用22阶行列式表示为其中D,Dx,Dy.问题:用上面的方法解二元一次方程组时,下面说法错误的是(C)AD7BDx14CDy27D方程组的解为3阅读理解。
12、专题18 新定义与阅读理解题1(2019湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果,则x1y2=x2y1,根据该材料填空,已知=(4,3),=(8,m),且,则m=_【答案】6【解析】=(4,3),=(8,m),且,4m=38,m=6;故答案为:6【名师点睛】本题考查新定义,点的坐标;理解阅读材料的内容,转化为所学知识求解是关键2(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”若等腰ABC中,A=80,则它的特征值k=_【答案】或【解析】当A为顶角时,等腰三角形两底角的度数为:=50,特征值k=;当A为底。
13、专题18 新定义与阅读理解题1(2019湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果,则x1y2=x2y1,根据该材料填空,已知=(4,3),=(8,m),且,则m=_2(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”若等腰ABC中,A=80,则它的特征值k=_3(2019河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7则(1)用含x的式子表示m=_;(2)当y=2时,n的值为_4(2019枣庄)对于实数a、b,定义关于“”的一种运算:ab=2a+b,例如34=23+4=10(1)求4(3)的值;(。
14、,苏科数学,12.1定义与命题,在气象预报中,有很多具有特定含义的图片,请问下面的图片你认识多少?,【问题情境】,苏科数学,材料阅读,在我们丰富的数学世界里有许多神奇的数你听说过费尔马数、相亲数、圣经数、回文数、正直数、水仙花数吗?我们先来认识一下“水仙花数”吧!各个数位上数字的立方和等于其本身的三位数叫做“水仙花数” 比如,153是“水仙花数”,因13+53+33=153. 同学们,你们能从113、407、220三个数中找出“水仙花数”吗?,一般地,对某一名称或术语进行描述或作出 规定就叫做该名称或术语的定义,在同一平面内,不相交的两。
15、1第十一章 三角形专题知识点+典型题型+难点题型第十一章 三角形专题知识点+典型题型+ 难点题型+详细答案 .111.1 与三角形有关的线段 .2知识框架 2一、基础知识点 2知识点 1 认识三角形 2知识点 2 三角形三边关系 4知识点 3 三角形的高、中线与角平分线 5知识点 4 三角形的稳定性 7二、典型题型 8题型 1 三角形三边关系(限定条件) 8题型 2 中线与三角形面积 8题型 3 高线与三角形面积 9三、难点题型 11题型 1 与三角形有关的线段 11题型 2 面积问题 等积变换 1211.2 与三角形有关的角 .15知识框架 15一、基础知识点 15知识点 1 三角形内。
16、 2020年高考文科数学导数的定义与基础应用题型归纳与训练【题型归纳】题型一 对导数定义的理解与考查例1、如图,直线和圆,当从开始在平面上绕点O匀速旋转(旋转角度不超过90o)时,它扫过的圆内阴影部分的面积是时间的函数,它的图像大致是( )。【答案】D【解析】在直线旋转的过程中,可以发现面积的平均变化率是先增大后减小,但是始终都是正数,即面积是时间的增函数,且增幅是先快再慢。选D.【易错点】不能把实际问题与导数的定义联系起来【思维点拨】深刻理解导数的定义-导数反映函数在点处变化的快慢程度.理解导数的几何意义,即。
17、 2020年高考文科数学函数的定义与性质题型归纳与训练【题型归纳】题型一 函数的概念及其表示例1 函数的定义域为( )A B C D【答案】【解析】,解得例2 下列函数中,其定义域和值域分别与函数的定义域和值域相同的是( )A. B. C. D 【答案】【解析】,定义域与值域均为,只有满足,故选【易错点】对数运算公式中参数的取值范围【思维点拨】按部就班,分别求出各函数的定义域与值域.也可以用排除法.例3 设函数,则满足的的取值范围是_【答案】【解析】 当时,不等式为恒成立;当,不等式恒成立;当时,不等式为,解得,即;综上,的取值范。
18、 2020年高考理科数学导数的定义与基础应用题型归纳与训练【题型归纳】题型一 对导数定义的理解与考查例1、如图,直线和圆,当从开始在平面上绕点O匀速旋转(旋转角度不超过90o)时,它扫过的圆内阴影部分的面积是时间的函数,它的图像大致是( )。【答案】D【解析】在直线旋转的过程中,可以发现面积的平均变化率是先增大后减小,但是始终都是正数,即面积是时间的增函数,且增幅是先快再慢。选D.【易错点】不能把实际问题与导数的定义联系起来【思维点拨】深刻理解导数的定义-导数反映函数在点处变化的快慢程度.理解导数的几何意义,即。
19、 2020年高考理科数学函数的定义与性质题型归纳与训练【题型归纳】题型一 求函数的定义域、值域例1 (1)函数的定义域为( )A.;B.;C. ;D. (2)设,则的定义域为( )A. ;B. ;C. ;D. 【答案】(1)D;(2)B【解析】(1)欲使函数有意义,必须并且只需,故应选择(2)由得,的定义域为,故解得。故的定义域为.选B.【易错点】抽象函数的定义域【思维点拨】如没有标明定义域,则认为定义域为使得函数解析式有意义的的取值范围,实际操作时要注意:分母不能为0; 对数的真数必须为正;偶次根式中被开方数应为非负数;零指数幂中,底数不等。
20、新定义和阅读一、单选题1已知二次函数 y=x 2+x+6 及一次函数 y=x+m,将该二次函数在 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新函数(如图所示) ,请你在图中画出这个新图象,当直线 y=x+m 与新图象有 4 个交点时,m 的取值范围是( )A m3 B m2 C2m3 D6m2【答案】D2如图,一段抛物线 y=x 2+4(2x2)为 C1,与 x 轴交于 A0,A 1两点,顶点为 D1;将 C1绕点 A1旋转 180得到 C2,顶点为 D2;C 1与 C2组成一个新的图象,垂直于 y 轴的直线 l 与新图象交于点 P1(x 1,y 1) ,P 2(x 2,y 2) ,与线段 D1D2交。