,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定定理3,2.2.2 平行四边形的性质,第2章 四边形,1.利用两组对边分别相等判定平行四边形;(重点),3.判定定理的相关运用.(难点),学习目标,2.利用对角线互相平分判定平行四边形;(重点),问题1 除了两组对边分别平行,平行四
苏教版四年级数学下册第6课时平行四边形的认识课件Tag内容描述:
1、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定定理3,2.2.2 平行四边形的性质,第2章 四边形,1.利用两组对边分别相等判定平行四边形;(重点),3.判定定理的相关运用.(难点),学习目标,2.利用对角线互相平分判定平行四边形;(重点),问题1 除了两组对边分别平行,平行四边形还有哪些性质?,平行四边形的对角相等.,平行四边形的对角线互相平分.,思考 我们得到的这些逆命题是否都成立?这节课我们一起探讨一下吧.,问题2 上面的两条条性质的逆命题各是什么?,两组对角分别相等的四边形是平行四边形;,对角线互相平分的四边形。
2、平行四边形的判定定理教学目标:1掌握平行四边形的判定定理 3;(重点)2综合运用平行四边形的性质与判定解决问题(难点)教学过程:一、情境导入我们已经学习了哪些平行四边形的判定方法?平行四边形的对角线互相平分的逆命题是什么?是否是真命题是否存在其他的判定方法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形已知,如图, AB.CD 相交于点 O, AC DB, AO BO, E.F 分别是 OC.OD 的中点求证:(1) AOC BOD;(2)四边形 AFBE 是平行四边形解析:(1)利用已知条件和全等三角形的判定方法即可证明 AOC BOD;(2)此题已知 AO BO。
3、平行四边形的判定定理教学目标:1掌握“一组对边平行且相等的四边形是平行四边形”的判定方法;(重点)2掌握“对边分别相等的四边形是平行四边形”的判定方法;(重点)3平行四边形判定定理的综合应用(难点)教学过程:一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就具有如下的一些性质:1两组对边分别平行且相等;2两组对角分别相等;3两条对角线互相平分那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定那么是否存在其他的判定方法呢?。
4、平行四边形的边、角性质知识点 1 平行四边形的定义1如图 221,在ABCD 中,EFGHAD,则图中的平行四边形有( )图 221A4 个 B5 个 C6 个 D7 个2在四边形 ABCD中,ADBC,当满足下列哪个条件时,四边形 ABCD是平行四边形( )A. AC180 B. BD180C. AB180 D. AD1803如图 222,在四边形 ABCD中,ABCD,若利用平行四边形的定义判定四边形 ABCD是平行四边形,则应添加的一个条件是_图 222知识点 2 平行四边形边、角的性质4已知在ABCD 中,AB4 cm,BC7 cm,则这个平行四边形的周长为( )A. 11 cm B. 28 cm C. 22 cm D. 44 cm5教材练习第 1题变式 如图 2。
5、19.2 平行四边形,第19章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形对角线的性质,1.探索并掌握平行四边形对角线性质;(重点) 2.灵活运用平行四边形的性质进行推理和计算.,导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,OB=OD,这个结论正确吗?,量一量,拿出手中的平行四边形纸片,测量出四。
6、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第2课时 平行四边形的性质定理2,1.掌握平行四边形对角线互相平分的性质;(重点) 2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.(难点),导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,O。
7、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第1课时 平行四边形的性质定理1,1.理解并掌握平行四边形的概念及掌握平行四边形的定 义和对边相等、对角相等的两条性质.(重点) 2.根据平行四边形的性质进行简单的计算和证明.(难点) 3.经历“实验猜想验证证明”的过程,发展学生的思维水平.,导入新课,观察下图,平行四边形在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,观看下面视频,一起来了解平行四边形吧.,两组对边都不平行,一组对边平行, 一组对边不平行,两组对边分别平行,问题1。
8、平行四边形的边、角的性质教学目标:1理解平行四边形的概念;(重点)2掌握平行四边形边、角的性质;(重点)3利用平行四边形边、角的性质解决问题(难点)教学过程:一、情境导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形 ABCD 中, B D,12,求证:四边形 ABCD 是平行四边形解析:根据三角形内角和定理求出 DAC ACB,从而可以推出 AD BC, AB CD,再根据平行四边形的定义即可推出结论证明:1 B ACB180,2 D CAD180, B D。
9、第 1 课 时 平行四边形的面积,长方形,正方形,长方形的面积 长宽,正方形的面积 边长边长,创设情境,下面两个图形的面积相等吗?,创设情境,1,下面两个图形的面积相等吗?,新知探究,1,下面两个图形的面积相等吗?,新知探究,1,下面两个图形的面积相等吗?,新知探究,2,你能把平行四边形转化成长方形吗?,新知探究,2,你能把平行四边形转化成长方形吗?,新知探究,2,比较两种转化方法,说说它们有什么相同的地方。,都是沿着平行四边形的高剪开的。,新知探究,2,是不是所有的平行四边形都能转化成长方形?转化前后两个图形有什么关系?,所有的平行四。
10、19.2 平行四边形,第19章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第3课时 平行四边形边的判定,情境引入,学习目标,1.平行四边形判定方法的探究.(重点) 2.平行四边形判定方法的理解和灵活应用.(难点),平行四边形的性质,边,平行四边形的对边平行,平行四边形的对边相等,角,平行四边形的对角相等,平行四边形的邻角互补,平行四边形的对角线互相平分,对称性,平行四边形是中心对称图形,对角线,导入新课,知识回顾,导入新课,学习了平行四边形之后,小明回家用细木棒钉制了一个平行四边形.第二天,小明拿着自己动手做的平行四边形向同学。
11、9.3平行四边形第 3课时从对角线的关系判定平行四边形练习一、选择题1在四边形 ABCD中,对角线 AC和 BD相交于点 O,下列条件中不能判定四边形 ABCD是平行四边形的是( )A OA OC, OB ODB AD BC, AB DCC AB DC, AD BCD AB DC, AD BC2已知在四边形 ABCD中,对角线 AC, BD相交于点 O,且 OA OC, OB OD,则下列结论不一定成立的是( )A AB AC B AB CDC BAD BCD D AD BC3在四边形 ABCD中,对角线 AC, BD相交于点 O,给出下列四个条件: AD BC; AD BC; OA OC; OB OD.从中任选两个条件,能使四边形 ABCD为平行四边形的选法有( )A3 种 B4 种。
12、2.2.2 第 2 课时 利用对角线的关系判定平行四边形 一、选择题1下列命题中,真命题有( )对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形是平行四边形A3 个 B2 个 C1 个 D0 个2如图 K141,在四边形 ABCD 中,对角线 AC 与 BD 相交于点 O,下列不能判定四边形ABCD 是平行四边形的是 ( )链 接 听 课 例 1归 纳 总 结图 K141AABDC,ADBC BABDC,ADBCCABDC,ADBC DOAOC,OBOD3在四边形 ABCD 中,对角线 AC,BD 相交于点 O,给出下列四个条件:ADBC;ADBC;OAOC;OBOD.从中任。
13、18.1 平行四边形 18.1.1 平行四边形的性质,第一课时,第二课时,人教版 数学 八年级 下册,平行四边形边、角的性质,第一课时,返回,【观察】上面图形给我们留下什么图形的形象?,1. 理解并掌握平行四边形的概念及掌握平行四边形的定义和对边相等、对角相等的两条性质.,2. 能够灵活运用平行四边形的性质解决问题.,素养目标,3. 经历“实验猜想验证证明”的过程,发展学生的思维水平.,下列常见的四边形它们的边之间有什么关系呢?,平行四边形的定义,两组对边都不平行,一组对边平行, 一组对边不平行,两组对边分别平行,你们还记得我们以前对平行四。
14、9.3 平行四边形第 2 课时从边的关系判定平行四边形练习一、选择题1不能判定一个四边形是平行四边形的条件是( )A两组对边分别平行B一组对边平行另一组对边相等C一组对边平行且相等D两组对边分别相等图 K1412如图 K141,在四边形 ABCD 中, AD BC,要使四边形 ABCD 成为平行四边形,则可增加的条件是( )链 接 听 课 例 1归 纳 总 结A AB CDB AD BCC AC BDD ABC BAD1803已知关于四边形 ABCD 有以下四个条件: AB CD; AB CD; BC AD; BC AD.从这四个条件中任选两个,能使四边形 ABCD成为平行四边形的选法有( )A6 种 B5 种 C4 种 D3 种4如图 。
15、讲解人: 时间:2020.6.1 MENTAL HEALTH COUNSELING PPT 5.2平行四边形 第五单元 平行四边形与梯形 人 教 版 小 学 数 学 四 年 级 上 册 我们认识过平行四边形,你能说出在哪些地方见过平行四边形吗? 我们以前也研究过平面图形,你还记得是怎么研究的吗?用到了什么工具? 一、新课导入 研究一下,平行四边形有什么特征。 可以研究它的边 可以研究它的角 可以。
16、9.3平行四边形第 1课时平行四边形的定义及其性质练习一、选择题1在 ABCD中,已知 A C200,则 A的度数是( )A160 B100 C80 D602如图 K131 所示,在 ABCD中, BC BD, C74,则 ADB的度数是( )A16 B22 C32 D68图 K131图 K1323如图 K132,在 ABCD中,对角线 AC和 BD相交于点 O.如果AC10, BD8, AB m,那么 m的取值范围是( )A1 m9 B2 m18C8 m10 D4 m54如图 K133,在 ABCD中, E, F是对角线 BD上的两点,如果添加一个条件使ABE CDF,则添加的条件不能是( )A AE CF。
17、1课时作业(十二)2.2.1 第 2 课时 平行四边形的对角线的性质 一、选择题1如图 K121,ABCD 的对角线 AC,BD 相交于点 O,则下列说法一定正确的是( )图 K121AAODO BAODO CAOCO DAOAB22017眉山如图 K122,EF 过ABCD 的对角线的交点 O,交 AD 于点 E,交 BC 于点 F.若ABCD 的周长为 18,OE1.5,则四边形 EFCD 的周长为 ( )链 接 听 课 例 1归 纳 总 结图 K122A14 B13 C12 D103如图 K123,在ABCD 中,已知ODA90,AC10 cm,BD6 cm,则 AD 的长为( )图 K123A4 cm B5 cm C6 cm D8 cm4如图 K124,在周长为 20 cm 的ABCD 中,ABAD,AC,BD 相交于点 O。
18、1课时作业(十三)2.2.2 第 1 课时 利用边的关系判定平行四边形 一、选择题1下列条件中不能判定四边形 ABCD 是平行四边形的是( )AABCD,ABCD BABCD,ADBCCABCD,ADBC DABCD,ADBC2在四边形 ABCD 中,ADBC,要判定四边形 ABCD 是平行四边形,还应满足( )AAC180 BBD180CAB180 DAD1803如图 K131,已知在四边形 ABCD 中,ABCD,ABCD,E 为 AB 上一点,过点 E作 EFBC,交 CD 于点 F,G 为 AD 上一点,H 为 BC 上一点,连接 CG,AH.若 GDBH,则图中的平行四边形有 ( )链 接 听 课 例 1归 纳 总 结图 K131A2 个 B3 个 C4 个 D6 个42018安徽在ABCD 。
19、1课时作业(十一)2.2.1 第 1 课时 平行四边形的边、角的性质 一、选择题1在ABCD 中,BA30,则C,D 的度数依次为 ( )链 接 听 课 例 2归 纳 总 结A85,95 B95,85C75,105 D无法确定22017农垦森在平行四边形 ABCD 中,A 的平分线把 BC 边分成长度是 3 和 4 的两部分,则平行四边形 ABCD 的周长是( )A22 B20C22 或 20 D1832017丽水如图 K111,在ABCD 中,连接 AC,ABCCAD45,AB2,则 BC 的长是 ( )链 接 听 课 例 2归 纳 总 结图 K111A. B2 C2 D42 24如图 K112,在ABCD 中,ACB25,现将ABCD 沿 EF 折叠,使点 C 与点 A重合,点 D 落在 G 。
20、第2章 四边形,2.2 平行四边形,第1课时 利用边的关系判定平行四边形,目标突破,总结反思,第2章 四边形,知识目标,2.2 平行四边形,知识目标,1通过自学阅读、操作、猜想、讨论,能够得到“一组对边平行且相等的四边形是平行四边形”这一判定定理,并能初步应用 2在理解平行四边形性质的基础上,经过画图、猜想、推理,能够得到“两组对边分别相等的四边形是平行四边形”这一判定定理,并会初步应用,目标突破,目标一 理解并会用“一组对边平行且相等的四边形是平行四边形”,2.2 平行四边形,例1 教材例5针对训练 如图229,已知BEDF,ADFCBE,AFCE。