山东菏泽

专题五二次函数综合题类型一线段(周长)问题(2019烟台)如图,顶点为M的抛物线yax2bx3与x轴交于A(1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y(x0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上

山东菏泽Tag内容描述:

1、专题五二次函数综合题类型一 线段(周长)问题(2019烟台)如图,顶点为M的抛物线yax2bx3与x轴交于A(1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y(x0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?(请直接写出结果)【分析】(1)由已知求出D点坐标,将点A(1,0)和D代入yax2bx3即可;(2)作M关于y。

2、专题二规律探索题类型一 数式规律探索(2019安顺)如图,将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 【分析】观察图表可知第n行第一个数是n2,可得第45行第一个数是2 025,推出第45行、第7列的数是2 02562 019.【自主解答】解数式规律探索型问题的一般方法(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规。

3、专题三圆切线的相关证明及计算类型一 切线的性质(2019菏泽)如图,BC是O的直径,CE是O的弦,过点E作O的切线,交CB的延长线于点G,过点B作BFGE于点F,交CE的延长线于点A.(1)求证:ABG2C;(2)若GF3,GB6,求O的半径【分析】 (1)连接OE,根据切线的性质得到OEEG,推出OEAB,得到AOEC,根据等腰三角形的性质得到OECC,求得AC,根据三角形的外角的性质即可得到结论;(2)根据勾股定理得到BF3,根据相似三角形的性质即可得到结论【自主解答】1(2017菏泽)如图,AB是O的直径,PB与O相切于点B,连接PA交O于点C,连接BC.(1)求证:BACCBP;(2)求证:PB2。

4、专题四几何综合题类型一 几何动点问题(2017菏泽)正方形ABCD的边长为6 cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MNAF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AFMN;(2)如图2,若点M从点D出发,以1 cm/s的速度沿DA向点A运动,同时点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为t s.BFy cm,求y关于t的函数表达式;当BN2AN时,连接FN,求FN的长【分析】(1)根据正方形的性质得到ADAB,BAD90,由垂直的定义得到AHM90,由余角的性质得到BAFAMH,根据全等三角形的性质即可得到结论;(2)根据。

5、专题一分析判断函数图象类型一 分析实际问题判断函数图象(2019自贡)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的( )【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解【自主解答】1(2019随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )2(2018宁夏)如图,一个长方。

标签 > 山东菏泽[编号:11944]