专题一探索规律问题 类型一 数式规律 (5年3考) (2019枣庄中考)观察下列各式: 11(1), 11(), 11(), , 请利用你发现的规律,计算: , 其结果为_ 【分析】根据题意找出规律,根据二次根式的性质计算即可 【自主解答】 1(2019改编题)观察下列等式:212,224,238,
2020山东菏泽中考数学精准大二轮复习专题二规律探索题Tag内容描述:
1、专题一探索规律问题类型一 数式规律 (5年3考)(2019枣庄中考)观察下列各式:11(1),11(),11(),请利用你发现的规律,计算:,其结果为_【分析】根据题意找出规律,根据二次根式的性质计算即可【自主解答】1(2019改编题)观察下列等式:212,224,238,2416,2532,2664,根据这个规律,则2122232422 019的末位数字是( )A0 B2 C4 D62(2019黄石中考)将被3整除余数为1的正整数按照下列规律排成一个三角形数阵:147101316192225283134374043则第20行第19个数是_3(2019安徽中考)观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式。
2、专题一探索规律问题类型一 数式规律(2016济宁中考)按一定规律排列的一列数:,1,1,请你仔细观察,按照此规律方框内的数字应为_【分析】先将第一个1化为,第二个1化为,再观察其规律即可【自主解答】1(2019改编题)观察下列等式:212,224,238,2416,2532,2664,根据这个规律,则2122232422 019的末位数字是( B )A0 B2C4 D62(2015济宁中考)若122232127;(122232)(342452)2311;(122232)(342452)(562672)3415;则(122232)。
3、专题七阅读理解新定义题类型一 几何新定义题型(2017宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形(1)如图1,在半对角四边形ABCD中,BD,CA,求B与C的度数之和;(2)如图2,锐角ABC内接于O,若边AB上存在一点D,使得BDBO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE2EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DGOB于点H,交BC于点G,当DHBG时,求BGH与ABC的面积之比【分析】(1)根据题意得出BD,CA,代入ABCD360求出即可;(2)求出BEDBEO,根据全等得出BDEBOE,连结OC,设EAF,则AFE2EAF。
4、专题二实际应用题类型一 几何类最值问题(2018福建B卷)空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米(1)已知a20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米,如图1.求所利用旧墙AD的长;(2)已知0a50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值【分析】(1)按题意设出AD的长,表示出AB的长进而构成方程求解即可;(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论S。
5、专题一选择题难题突破类型一 几何动点函数图象分析命题角度一个动点与图形线段长、面积如图所示,已知ABC中,BC12,BC边上的高h6,D为BC边上一点,EFBC,交AB于点E,交AC于点F,设点E到边BC的距离为x,则DEF的面积y关于x的函数图象大致为( )【分析】 可过点A向BC作AGBC于点G,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案【自主解答】1如图,在正方形ABCD中,AB2,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是( )2(2019粤西联考)如图,在直径为AB的半圆O上有一。
6、专题六实际应用题类型一 工程问题(2019青岛)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3 000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成如果总加工费不超过7 800元,那么甲至少加工了多少天?【分析】 (1)根据题意列出分式方程,求解并检验即可解答(2)根据题意列出不等式求解即可【自主解答】1建设中的大外环路是我市的一。
7、专题五尺规作图题类型 尺规作图(2019广东)如图,在ABC中,点D是AB边上的一点(1)请用尺规作图法,在ABC内,求作ADE,使ADEB,DE交AC于E;(不要写作法,保留作图痕迹)(2)在(1)的条件下,若2,求的值【分析】 (1)利用基本作图(作一个角等于已知角)作出ADEB;(2)先利用作法得到ADEB,则可判断DEBC,然后根据平行线分线段成比例定理求解【自主解答】1(2019菏泽)如图,四边形ABCD是矩形(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);(2)若BC4,BAC30,求BE的长2(2019济宁)如图,点M和点N在AOB内部(1)请你作出。
8、专题二填空题难题突破类型一 几何图形的旋转与折叠(2019深圳模拟)如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_【分析】 利用勾股定理及全等三角形的性质、等积法求解即可【自主解答】 1如图,在菱形ABCD中,ABC120,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B,D重合),折痕为EF,若DG2,BG6,则BE的长为_.2如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C,再将所折得的图形沿EF折叠,使得点D和点A重合若AB3。
9、专题一探索规律问题类型一 数式规律 (5年2考) 观察“田”字中各数之间的关系:则c的值为_【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可【自主解答】 1(2019改编题)观察下列等式:212,224,238,2416,2532,2664,根据这个规律,则2122232422 019的末位数字是( )A2 B4 C0 D62(2018德州中考)我国南宋数学家杨辉所著的详解九章算术一书中,用下图的三角形解释二项式(ab)n的展开式的各项系数,此三角形称为“杨辉三角”根据“杨辉三角”请计算(ab)8的展开式中从左起。
10、专题三圆切线的相关证明及计算类型一 切线的性质(2019菏泽)如图,BC是O的直径,CE是O的弦,过点E作O的切线,交CB的延长线于点G,过点B作BFGE于点F,交CE的延长线于点A.(1)求证:ABG2C;(2)若GF3,GB6,求O的半径【分析】 (1)连接OE,根据切线的性质得到OEEG,推出OEAB,得到AOEC,根据等腰三角形的性质得到OECC,求得AC,根据三角形的外角的性质即可得到结论;(2)根据勾股定理得到BF3,根据相似三角形的性质即可得到结论【自主解答】1(2017菏泽)如图,AB是O的直径,PB与O相切于点B,连接PA交O于点C,连接BC.(1)求证:BACCBP;(2)求证:PB2。
11、专题一分析判断函数图象类型一 分析实际问题判断函数图象(2019自贡)均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的( )【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解【自主解答】1(2019随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )2(2018宁夏)如图,一个长方。
12、专题五二次函数综合题类型一 线段(周长)问题(2019烟台)如图,顶点为M的抛物线yax2bx3与x轴交于A(1,0),B两点,与y轴交于点C,过点C作CDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y(x0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?(请直接写出结果)【分析】(1)由已知求出D点坐标,将点A(1,0)和D代入yax2bx3即可;(2)作M关于y。
13、专题四几何综合题类型一 几何动点问题(2017菏泽)正方形ABCD的边长为6 cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MNAF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AFMN;(2)如图2,若点M从点D出发,以1 cm/s的速度沿DA向点A运动,同时点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为t s.BFy cm,求y关于t的函数表达式;当BN2AN时,连接FN,求FN的长【分析】(1)根据正方形的性质得到ADAB,BAD90,由垂直的定义得到AHM90,由余角的性质得到BAFAMH,根据全等三角形的性质即可得到结论;(2)根据。
14、专题一规律探索题类型一 数式规律探索(2019唐山路北区二模)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,比如,他们研究过1,3,6,10,由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用(n1)表示请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数(注:若自然数a等于自然数b2,则称自然数a为完全平方数,如1,4,9等是完全平方数)【分析】(1)根据题设中的规律,用k表示出。
15、专题二规律探索题类型一 数式规律探索(2019安顺)如图,将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 【分析】观察图表可知第n行第一个数是n2,可得第45行第一个数是2 025,推出第45行、第7列的数是2 02562 019.【自主解答】解数式规律探索型问题的一般方法(1)当所给的一组数是整数时,先观察这组数字是自然数列、正数列、奇数列、偶数列还是正整数列经过平方、平方加1或减1等运算后的数列,然后看这组数字的符号,判断数字符号的正负是交替出现还是只出现一种符号,最后把数字规律和符号规。