人教B版高中数学必修五课件3.1.1 不等关系与不等式

第二章 一元二次函数方程和不等式 2.12.1 等式性质与不等式性质等式性质与不等式性质 第第1 1课时课时 不等关系与不等式不等关系与不等式 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.会用不等式组表示实际,第1课时 二元一次不等式与平面区域,第三章 4.1 二元一

人教B版高中数学必修五课件3.1.1 不等关系与不等式Tag内容描述:

1、第二章 一元二次函数方程和不等式 2.12.1 等式性质与不等式性质等式性质与不等式性质 第第1 1课时课时 不等关系与不等式不等关系与不等式 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.会用不等式组表示实际。

2、第1课时 二元一次不等式与平面区域,第三章 4.1 二元一次不等式(组)与平面区域,学习目标 1.理解二元一次不等式的解、解集概念. 2.会画出二元一次不等式表示的平面区域.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二元一次不等式(组)的概念,思考 对于只含有一个未知数的不等式x6,它的一个解就是能满足不等式的x的一个值,比如x0.那么对于含有两个未知数的不等式xy6,你能类似地举出一个解吗?,答案,答案 含两个未知数的不等式的一个解,即满足不等式的一组x,y的取值,例如 也可写成(0,0).,梳理 (1)含有两个未知数,并且未。

3、第三章 3.3 一元二次不等式及其解法,第2课时 一元二次不等式的应用及恒成立问题,学习目标 1.会解可化为一元二次不等式(组)的简单分式不等式. 2.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以解决. 3.掌握与一元二次不等式有关的恒成立问题的解法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 分式不等式的解法,答案 等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.,梳理 一般的分式不等式的同解变形法则:,f(x)g(x)0,f(x)g(x)0,g(x)0,知识点二 一元二次不等式恒成立问题,思考 x10在区间2,3上。

4、第三章 3.3 一元二次不等式及其解法,第1课时 一元二次不等式及其解法,学习目标 1.理解一元二次方程、一元二次不等式与二次函数的关系. 2.掌握图象法解一元二次不等式. 3.体会数形结合、分类讨论的思想.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 一元二次不等式的概念,思考 我们知道,方程x21的解集是1,1,解集中的每一个元素均可使等式成立.那么你能写出不等式x21的解集吗?,答案 不等式x21的解集为x|x1,该集合中每一个元素都是不等式的解,而不等式的每一个解均属于解集.,梳理 (1)一般地,含有一个未知数,且未知数的 。

5、3.2 基本不等式与最大(小)值,第三章 3 基本不等式,学习目标 1.熟练掌握基本不等式及变形的应用. 2.会用基本不等式解决简单的最大(小)值问题. 3.能够运用基本不等式解决生活中的应用问题,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 用基本不等式求最值,思考 因为x212x,当且仅当x1时取等号.所以当x1时,(x21)min2. 以上说法对吗?为什么?,答案,答案 错.显然(x21)min1. x212x,当且仅当x1时取等号.仅说明曲线yx21恒在直线y2x的上方,仅在x1时有公共点,但该点不是yx21的最低点. 使用基本不等式求最值,不等式两端必须有一端是定。

6、第三章 3.5 二元一次不等式(组)与简单的线性规划问题,3.5.1 二元一次不等式(组)所表示的平面区域,学习目标 1.理解二元一次不等式组的解、解集概念. 2.会画出二元一次不等式(组)表示的平面区域.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二元一次不等式(组)的概念,思考 对于只含有一个未知数的不等式x6,它的一个解就是能满足不等式的x的一个值,比如x0.那么对于含有两个未知数的不等式xy6,你能类似地举出一个解吗?,梳理 (1)含有两个未知数,并且未知数的最高次数是1的不等式称为_不等式; (2)由几个二元一次不等式组成的。

7、章末复习,第三章 不等式,学习目标 1.整合知识结构,进一步巩固、深化所学知识. 2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式. 3.体会“三个二次”之间的内在联系在解决问题中的作用. 4.能熟练地运用图解法解决线性规划问题. 5.会用均值不等式求解函数最值.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.“三个二次”之间的关系 所谓三个二次,指的是二次 图象及与x轴的交点;相应的一元二次 的实根;一元二次 的解集端点. 解决其中任何一个“二次”问题,要善于联想其余两个,并灵活转化. 2.均值不等式 利用均值不等式。

8、第三章 3.2 均值不等式,第2课时 均值不等式的应用,学习目标 1.熟练掌握均值不等式及变形的应用. 2.会用均值不等式解决简单的最大(小)值问题. 3.能够运用均值不等式解决生活中的应用问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 均值不等式及变形,梳理 以下是均值不等式的常见变形,试用不等号连接,并说明等号成立的条件.,当且仅当 时,以上三个等号同时成立.,ab,知识点二 用均值不等式求最值,思考 因为x212x,当且仅当x1时取等号.所以当x1时,(x21)min2. 以上说法对吗?为什么?,答案 错.显然(x21)min1. x212x,当且仅。

9、第三章 不等式,3.4 不等式的实际应用,学习目标 1.掌握建立一元二次不等式模型解决实际问题. 2.掌握建立均值不等式模型解决实际问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 不等式模型,思考 一般情况下,建筑民用住宅时,民用住宅商户的总面积应小于该住宅的占地面积,而窗户的总面积与占地面积的比值越大,住宅的采光条件越好,同时增加相等的窗户面积和占地面积,如何研究住宅的采光条件是变好了还是变差了?,梳理 建立不等式模型解决实际问题的过程: (1)理解题意,设出变量(必要时可画出示意图帮助理解); (2)建立相。

10、第三章 不等式,1.2 不等关系与不等式(二),1.掌握不等式性质推导及应用. 2.通过解决具体问题,培养严谨的思维习惯.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 不等式的性质,不能.如12,24,但(1)(2)b,cd能推出acbd吗?,梳理,一般地,不等式有下列性质,但要注意其成立条件: (1)对称性:abbb,bca c; (3)可加性:abac bc;ab,cdac bd; (4)可乘性:ab,c0ac bc; ab0,cd0ac bd; (5)可乘方:ab0an bn(nN); (6)可开方:ab0 (nN).,知识点。

11、第三章 不等式,1.2 不等关系与不等式(一),1.实数比较大小的方法. 2.通过解决具体问题,培养严谨的思维习惯.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 作差法比较两个实数大小的原理,因为2x与x21两个式子都在变化,谁大谁小不容易确定.而x212x(x1)20,大小关系容易确定.,答案,2x与x21谁大谁小容易确定吗?x212x与0的大小关系呢?,梳理,一般地,可以通过比较ab与0的大小来比较a与b的大小,其原理是:abab0,abab0,ab,bc,则ac.,有同学借助一个中间量:x1b,那么acb。

12、第三章 3.2 均值不等式,第1课时 均值不等式,学习目标 1.理解均值不等式的内容及证明. 2.能熟练运用均值不等式来比较两个实数的大小. 3.能初步运用均值不等式证明简单的不等式.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 算术平均值与几何平均值的概念,思考 如图,AB是圆O的直径,点Q是AB上任一点,AQa,BQb,过点Q作PQ垂直于AB且交圆O于点P,连接AP,PB.如何用a,b表示PO,PQ的长度?,算术,几何,知识点二 均值定理及其常见推论,当且仅当ab时,等号成立,,当且仅当ab时,等号成立.,梳理 1.均值定理,均值,均值定理可叙述为:。

13、第三章 3.1 不等关系与不等式,3.1.2 不等式的性质,学习目标 1.理解并掌握不等式的性质. 2.能够利用不等式的性质进行数或式的大小比较. 3.会证明一些简单的不等式.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 不等式的基本性质,思考 试用作差法证明ab,bcac.,答案 ab,bcab0,bc0abbc0ac0ac.,梳理 不等式性质:,知识点二 不等式性质的注意事项,思考1 在性质4的推论1中,若把a,b,c,d为正数的条件去掉,即ab,cd,能推出acbd吗?若不能,试举出反例.,答案 不能,例如12,23,但122(2)(3).,思考2 在性质3的推论2中,能把“”。

14、1.1 不等关系 1.2 不等关系与不等式,第三章 1 不等关系,学习目标 1.能用不等式(组)表示实际问题的不等关系. 2.初步学会作差法比较两实数的大小. 3.掌握不等式的基本性质,并能运用这些性质解决有关问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 不等关系,思考 限速40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h,用不等式如何表示?,答案,答案 v40.,梳理 试用不等式表示下列关系: (1)a大于b a b (2)a小于b a b (3)a不超过b a b (4)a不小于b a b,bab0;abab0; abab0.,知识点三 。

15、第三章 3.1 不等关系与不等式,3.1.1 不等关系与不等式,学习目标 1.能用不等式(组)表示实际问题的不等关系. 2.学会用作差法比较两实数的大小.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 不等关系与不等式的概念,思考 限速40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h,用不等式如何表示?,答案 v40.,梳理 (1)用数学符号“”“”“”“”“”连接 或_,以表示它们之间的 关系,含有这些 的式子叫做不等式. (2)符号“”和“”的含义:如果a,b是两个实数,那么ab,即为_;ab即为 . (3)对于任意实数。

【人教B版高中数学必修五课件】相关PPT文档
标签 > 人教B版高中数学必修五课件3.1.1 不等关系与不等式[编号:100066]