1归纳与类比11归纳推理一、选择题1观察下列等式:1323321323336213233343102,,根据上述规律可知,132333435363等于()A192B202C212D222考点归纳推理的应用题点归纳推理在数对(组)中的应用答案C解析由题意可知,132333第一章推理与证明1归纳与类比1
归纳推理Tag内容描述:
1、讲解人: 时间:2020.6.1 P E O P L E S E D U C A T I O N P R E S S H I G H S C H O O L M A T H E M A T I C S E L E C T I V E 1 - 2 2.1.1合情推理合情推理归纳推理归纳推理 第2章 推理与证明 人 教 版 高 中 数 学 选 修 1 - 2 高中数学学习状 态问卷调查 对数学 的。
2、1归纳与类比11归纳推理一、选择题1观察下列等式:132332,13233362,13233343102,根据上述规律可知,132333435363等于()A192 B202 C212 D222考点归纳推理的应用题点归纳推理在数对(组)中的应用答案C解析由题意可知,132333435363(123456)2212.2.观察图形规律,在其右下角的空格内画上合适的图形为()A. BC. D考点归纳推理的应用题点归纳推理在图形中的应用答案A解析观察可发现规律:每行、每列中,方、圆、三角三种形状均各出现一次,每行、每列有两阴影一空白,即得结果3观察下列式子:1,1,1,根据以上式子可以猜想:1小于()A. B.C. D.考。
3、第一章推理与证明1归纳与类比1.1归纳推理一、选择题1根据给出的数塔猜测123 45697等于()192111293111123941 1111 2349511 11112 34596111 111A1 111 110 B1 111 111C1 111 112 D1 111 1132如图为一串白黑相间排列的珠子,按这种规律排下去,那么第36颗珠子的颜色是()A白色 B黑色C白色可能性大 D黑色可能性大3观察下列各式:7249,73343,742 401,则72 015的末两位数字为()A01 B43 C07 D494n个连续自然数按规律排列如表:根据规律,从2 014到2 016,箭头的方向依次为()5已知anlogn1(n2)(nN),观察下列算式:a1a2log23log。
4、1归纳与类比11归纳推理学习目标1.了解归纳推理的含义.2.能用归纳方法进行简单的推理,体会并认识归纳推理在数学发展中的作用知识点归纳推理思考(1)一个人看见一群乌鸦都是黑的,于是说“天下乌鸦一般黑”;(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电以上属于什么推理?答案属于归纳推理符合归纳推理的定义特征,即由部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理梳理归纳推理的定义及特征定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为。
5、1.1 归纳推理,第一章 1 归纳与类比,学习目标,1.了解归纳推理的含义. 2.能用归纳方法进行简单的推理,体会并认识归纳推理在数学发展中的作用.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点 归纳推理,思考 (1)一个人看见一群乌鸦都是黑的,于是说“天下乌鸦一般黑”; (2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电. 以上属于什么推理?,答案 属于归纳推理.符合归纳推理的定义特征,即由部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理.,梳理 归纳推理的定义及特征,部分,每一个,部分,整体,不一。
6、1归纳与类比1.1归纳推理一、选择题1观察下列等式:132332,13233362,13233343102,根据上述规律可知,132333435363等于()A192 B202 C212 D222考点归纳推理的应用题点归纳推理在数对(组)中的应用答案C解析由题意可知,132333435363(123456)2212.2.观察图形规律,在其右下角的空格内画上合适的图形为()A. B C. D考点归纳推理的应用题点归纳推理在图形中的应用答案A解析观察可发现规律:每行、每列中,方、圆、三角三种形状均各出现一次,每行、每列有两阴影一空白,即得结果3观察下列式子:1,1,1,根据以上式子可以猜想:1小于()A. B. C. D。
7、1归纳与类比1.1归纳推理学习目标1.了解归纳推理的含义.2.能用归纳方法进行简单的推理,体会并认识归纳推理在数学发展中的作用知识点归纳推理思考(1)一个人看见一群乌鸦都是黑的,于是说“天下乌鸦一般黑”;(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电以上属于什么推理?答案属于归纳推理符合归纳推理的定义特征,即由部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理梳理归纳推理的定义及特征定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称。
8、第 1 课时 归纳推理课后训练案巩固提升1.观察下列各式:1=1 2,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,可以得出的一般性结论是( )A.n+(n+1)+(n+2)+(3n-2)=n2B.n+(n+1)+(n+2)+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+(3n-1)=n2D.n+(n+1)+(n+2)+(3n-1)=(2n-1)2解析: 观察各等式的构成规律可以发现 ,各等式的左边是 2n-1(nN *)项的和,其首项为 n,右边是项数的平方,故第 n 个等式首项为 n,共有 2n-1 项,右边是(2n-1) 2,即 n+(n+1)+(n+2)+(3n-2)=(2n-1)2.答案: B2.已知不等式 1+ ,1+ ,1+ ,均成立,照此规律,第五个不等式应为 1+ ( )A. B. C. D.解析: 观。