高中数学专题06 函数图象含答案解析

第四章 指数函数与对数函数 4.24.2 指数函数指数函数 第第1 1课时课时 指数函数的概念图象与性质指数函数的概念图象与性质 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.理解指数函数的概念与意义,掌 握指,第四章 指数函数与对数函数 4.44.4 对数函数对数函数

高中数学专题06 函数图象含答案解析Tag内容描述:

1、第四章 指数函数与对数函数 4.24.2 指数函数指数函数 第第1 1课时课时 指数函数的概念图象与性质指数函数的概念图象与性质 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.理解指数函数的概念与意义,掌 握指。

2、第四章 指数函数与对数函数 4.44.4 对数函数对数函数 第第1 1课时课时 对数函数的概念图象及性质对数函数的概念图象及性质 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.理解对数函数的概念,会求对数 函数。

3、第五章 三角函数 5.65.6 函数函数yAsinx 5.6.15.6.1 匀速圆周运动的数学模型匀速圆周运动的数学模型 5.6.25.6.2 函数函数yAsinx的图象的图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心。

4、第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.35.4.3 正切函数的性质与图象正切函数的性质与图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.能画出正切函数的图象重点 。

5、高中数学专题07 三角函数及其性质【母题原题1】【2019年高考天津卷文数】已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为若,则A2BCD2【答案】C【解析】为奇函数,;的最小正周期为,又,故选C【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数,结合函数性质逐步得出的值即可【母题原题2】【2018年高考天津卷文数】将函数的图象向右平移个单位长度,所得图象对应的函数A在区间上单调递增B在区间上单调递减C在区间上单调递增D在区间上单调递减。

6、第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.15.4.1 正弦函数余弦函数的图象正弦函数余弦函数的图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.了解由单位圆和正余弦函。

7、高中数学专题03 指数函数与对数函数【母题来源一】【2019年高考全国卷文数】已知,则ABCD【答案】B【解析】即则故选B【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养采取中间量法,根据指数函数和对数函数的单调性即可比较大小【母题来源二】【2018年高考全国卷文数】已知函数,若,则_【答案】【解析】根据题意有,可得,所以.故答案是.【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.【命题意图】。

8、高中数学专题05 指数函数、对数函数、幂函数【母题原题1】【2019年高考天津卷文数】已知,则a,b,c的大小关系为A B CD【答案】A【解析】,故选A【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与的大小进行判断【母题原题2】【2018年高考天津卷文数】已知,则的大小关系为A B C D【答案】D【解析】由题意可知:,即,综上可得:故选D【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指。

9、高中数学专题08 函数的性质【母题原题1】【2019年高考天津卷文数】已知函数若关于x的方程恰有两个互异的实数解,则a的取值范围为ABCD 【答案】D【解析】作出函数的图象,以及直线,如图,关于x的方程恰有两个互异的实数解,即为和的图象有两个交点,平移直线,考虑直线经过点和时,有两个交点,可得或,考虑直线与在时相切,由,解得(舍去),所以的取值范围是故选D【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法【母题原题2】【2018年高考天津卷文数。

10、高中数学专题06 圆锥曲线及其性质【母题原题1】【2019年高考天津卷文数】已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为ABCD【答案】D【解析】抛物线的准线的方程为,双曲线的渐近线方程为,则有,故选D【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度解答时,只需把用表示出来,即可根据双曲线离心率的定义求得离心率【母题原题2】【2018年高考天津卷文数】已知双曲线的离心率为,过右焦点且垂直于轴的直线与双曲线交于,两点设,到双曲线同。

11、高中数学专题06 指数函数与对数函数【母题来源一】【2019年高考全国卷理数】若ab,则Aln(ab)0 B3a0 Dab【答案】C【解析】取,满足,但,则A错,排除A;由,知B错,排除B;取,满足,但,则D错,排除D;因为幂函数是增函数,所以,即a3b30,C正确故选C【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断【命题意图】1了解指数函数模型的实际背景2理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算3理解指数函数的概念,理解指数函数的。

12、高中数学专题05 函数的图象【母题来源一】【2019年高考全国卷文数】函数f(x)=在的图象大致为ABCD【答案】D【解析】由,得是奇函数,其图象关于原点对称又,可知应为D选项中的图象故选D【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养采取性质法和赋值法,利用数形结合思想解题【母题来源二】【2017年高考全国卷文数】函数的部分图像大致为A BC D【答案】C【解析】由题意知,函数为奇函数,故排除B;当时,故排除D;当时,故排除A故选C【名师点睛】函数图像问题首先关注定义域,从图像的对称性,分析。

13、高中数学专题06 函数图象【母题来源一】【2019年高考浙江卷】在同一直角坐标系中,函数,(,且)的图象可能是【答案】D【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合故选D【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性【母题来源二】【2018年高考浙江卷】。

【高中数学专题06 函数图象含】相关PPT文档
【高中数学专题06 函数图象含】相关DOC文档
标签 > 高中数学专题06 函数图象含答案解析[编号:135513]