5.35.3 诱导公式诱导公式 第第 1 1 课时课时 诱导公式诱导公式 一一 课时对点练课时对点练 1sin 1 290 等于 A32 B12 C.12 D.32 答案 B 解析 sin 1 290 sin3360 210 sin 210,3.2对数函数 3.2.1对数 第1课时对数的概念 一、选
第1课时 点斜式Tag内容描述:
1、5.35.3 诱导公式诱导公式 第第 1 1 课时课时 诱导公式诱导公式 一一 课时对点练课时对点练 1sin 1 290 等于 A32 B12 C.12 D.32 答案 B 解析 sin 1 290 sin3360 210 sin 210。
2、3.2对数函数3.2.1对数第1课时对数的概念一、选择题1在对数式bloga3(5a)中,实数a的取值范围是()A(,3)(5,) B(3,5)C(3,4)(4,5) D(3,4)答案C解析由得3a5且a4.2log3等于()A4 B4 C. D答案B解析令log3t,则3t34,t4.3方程的解是()A9 B. C. D.答案D解析22,log3x2,x32.4已知f(ex)x,则f(3)等于()Alog3e Bln 3 Ce3 D3e答案B解析f(ex)x,由ex3得xln 3,即f(3)ln 3,故选B.5若loga3m,loga5n,则a2mn的值是()A15 B75 C45 D225答案C解析由loga3m,得am3,由loga5n,得。
3、第3课时一般式一、选择题1.直线(m25m6)x(m29)y20的斜率为2,则m的值为()A.8 B.8 C.3 D.3答案A解析由已知得m290,且2,解得m8或m3(舍去).2.若点A(ab,ab)在第一象限内,则直线bxayab0不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C解析点A在第一象限,所以ab0且ab0,即a0,b0,由bxayab0可得yxb,所以0,直线yxa与y轴的交点在y轴正半轴上,直线xya0过第一、二、三象限,而直线axy0过定点(0,0),倾斜角为锐角,此时各选项都不正确;若a0,则直线yxa与y轴的交点在y轴负半轴上,直线过第一、三、四象限。
4、2.1 整式第 1课时 单项式能力提升1.下列结论正确的是( )A.a是单项式,它的次数是 0,系数为 1B. 不是单项式C. 是一次单项式1xD.- 是 6次单项式,它的系数是 -3a2b3c5 352.已知 是 8次单项式,则 m的值是( )x2my3z7A.4 B.3C.2 D.13.3105xy的系数是 ,次数是 . 4.下列式子: ab; 3xy2; ;-a 2+a;- 1;a- .其中是单项式的是 .(填序号) 57 1a b25.写出一个含有字母 x, y的五次单项式 . 6.关于单项式 -23x2y2z,系数是 ,次数是 . 7.某学校到文体商店买篮球,篮球单价为 a元,买 10个以上(包括 10个)按 8折优惠 .用单项式填空:(1)购买 9个篮球应。
5、3.1指数函数3.1.1分数指数幂第1课时根式一、选择题1下列等式中根式均有意义,则一定成立的等式的个数是()()na(nN*且n1);a(n为大于1的奇数);|a|(n为大于零的偶数)A0个 B1个 C2个 D3个答案D解析由n次方根的定义可知均正确2化简(2x1)的结果是()A12x B0C2x1 D(12x)2答案C解析|12x|,2x1,12x0,|12x|(12x)2x1.3化简的值是()A. BC D答案B解析.4化简的值是()Ax BxCx Dx答案C解析要使有意义,需x30,即x0.|x|x.5当有意义时,化简的结果是()A2x5 B2x1 C1 D52x答案C解析因。
6、第2课时直线方程的两点式和一般式学习目标1.掌握直线方程的两点式和一般式.2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示.3.能将直线方程的几种形式进行互相转换,并弄清各种形式的应用范围.知识点一直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b且a0,b01斜率存在且不为0,直线不过原点知识点三直线方程的一般式1.一般式方程形式AxByC0条件A,B不同。
7、课题4 化学式与化合价 第1课时 化学式,第四单元 自然界的水,导入新课,讲授新课,课堂小结,随堂训练,导入新课,1.元素符号“Fe”表示的意义,Fe,铁元素,一个铁原子,铁这种物质,2.CO2 H2 H2O分别表示什么意义呢?,学习目标,导入新课,1.了解化学式及其含义,掌握一些常见物质的化学式 2.了解化学式的写法和读法,讲授新课,1.概念:,【注意】每种纯净物的组成是固定不变的,所以,一种物质的化学式只有一个。,如:水 H2O氧气 O2二氧化碳 CO2,用元素符号和数字的组合表示物质组成的式子叫化学式。,2.表示的意义,化学式,宏观,微观,表示一种物质 表示。
8、第2课时直线方程的两点式和一般式一、选择题1.若方程AxByC0表示直线,则A,B应满足的条件为()A.A0 B.B0C.AB0 D.A2B20考点直线的一般式方程题点直线的一般式方程的概念答案D解析方程AxByC0表示直线的条件为A,B不能同时为0,即A2B20.2.过坐标平面内两点P1(2,0),P2(0,3)的直线方程是()A.1 B.0C.1 D.1考点直线的截距式方程题点利用截距式求直线方程答案C3.直线ymx3m2(mR)必过定点()A.(3,2) B.(3,2)C.(3,2) D.(3,2)答案A解析由ymx3m2,得y2m(x3),所以直线必过点(3,2).4.直线l的方程为AxByC0,若直线l过原点和二、四象限,则()A.C0,B0 B.A。
9、第2课时两点式一、选择题1.一条直线不与坐标轴平行或重合,则它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式答案B解析由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式.由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式.故选B.2.直线1在y轴上的截距是()A.|b| B.b2 C.b2 D.b答案B解析令x0,得yb2.3.两条直线l1:1和l2:1在同一直角坐标系中的。
10、第2课时直线的两点式和一般式方程学习目标1.掌握直线方程的两点式及截距式,并理解它们存在的条件.2.理解直线方程的一般式的特点与方程其它形式的区别与联系.3.会直线方程的一般式与其它形式之间相互转化,进一步掌握求直线方程的方法知识点一直线方程的两点式直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b,且a0,b01斜率存在且不为0,不过原点知识点三直线的一。
11、第2课时直线的两点式和一般式方程一、选择题1经过两点(5,0),(2,5)的直线方程为()A5x3y250 B5x3y250C3x5y250 D5x3y250考点直线的两点式方程题点利用两点式求直线方程答案B解析由两点式得,所以得5x3y250.2在x轴和y轴上的截距分别为2,3的直线方程是()A.1 B.1C.1 D.1答案C3直线1过第一、三、四象限,则()Aa0,b0 Ba0,b0 Da0,b0考点题点答案B4直线ax3my2a0(m0)过点(1,1),则直线的斜率k等于()A3 B3 C. D答案D解析由点(1,1)在直线上,可得a3m2a0(m0),解得ma,故直线方程为ax3ay2a0(a0),即x3y20,其。
12、第2课时两点式学习目标1.掌握直线方程两点式的形式、特点及适用范围.2.了解直线方程截距式的形式、特点及适用范围.知识点一直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b且a0,b01斜率存在且不为0,不过原点一、直线的两点式方程例1已知三角形的三个顶点是A(4,0),B(6,7),C(0,3),求三边所在的直线方程.解直线AB过A,B两点,由两点式得,整理得7x2y280.直线AB的方程为7x2y280.直。
13、第1课时 直线方程的点斜式,第二章 1.2 直线的方程,学习目标 1.了解由斜率公式推导直线方程的点斜式的过程. 2.掌握直线的点斜式方程与斜截式方程. 3.会利用直线的点斜式与斜截式方程解决有关的实际问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线方程的点斜式,思考1 如图,直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?,则x,y应满足yy0k(xx0).,思考2 经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示? 答案 斜率不存在的直线不能用点斜式表示,过点P。
14、讲解人: 时间:2020.6.1 M E N T A L H E A L T H C O U N S E L I N G P P T 3.2.1直线的点斜式方程直线的点斜式方程 第3章 直线与方程 人 教 版 高 中 数 学 必 修 二 1.倾斜角 的定义及其取值范围; 2.已知直线上两点 ,则直线的斜率为k , 21 21 y y k xx 11,122212 (。
15、第2课时直线的点斜式方程学习目标 1掌握直线的点斜式方程和直线的斜截式方程2结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义3会根据斜截式方程判断两直线的位置关系知识链接下列说法中,若两条不重合的直线平行,则它们的斜率相等;若两直线的斜率相等,则两直线平行;若两直线垂直,则其斜率之积为1;若两直线的斜率之积为1,则它们互相垂直正确的有_答案预习导引1直线的点斜式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率kyy0k(xx0)斜率存在的直线2.直线l在坐标轴上的截距(1)直线在y轴上的截距:。
16、2.2.2直线方程的几种形式第1课时直线的点斜式方程基础过关1.直线的点斜式方程yy0k(xx0)可以表示()A.任何一条直线B.不过原点的直线C.不与坐标轴垂直的直线D.不与x轴垂直的直线答案D解析点斜式方程适用的前提条件是斜率存在,故其可表示不与x轴垂直的直线.2.经过点(1,1),斜率是直线yx2的斜率的2倍的直线方程是()A.x1B.y1C.y1(x1) D.y12(x1)答案C解析由方程知,已知直线的斜率为,所求直线的斜率是,由直线方程的点斜式可得方程为y1(x1),选C.3.与直线y2x1的斜率互为负倒数,且在y轴上的截距为4的直线的斜截式方程是()A.yx4B.y2x4C.y2x4D.yx。
17、2.1.2直线的方程第1课时点斜式一、选择题1.过点(4,2),倾斜角为150的直线的点斜式方程为()A.y2(x4)B.y(2)(x4)C.y(2)(x4)D.y2(x4)答案B解析由题意知ktan 150,所以直线的点斜式方程为y(2)(x4).2.已知直线的倾斜角为60,在y轴上的截距为2,则此直线的方程为()A.yx2 B.yx2C.yx2 D.yx2答案D解析60,ktan 60,直线l的方程为yx2.3.直线yb2(xa)在y轴上的截距为()A.ab B.2abC.b2a D.|2ab|答案C解析由yb2(xa),得y2x2ab,故在y轴上的截距为b2a.4.将直线yx绕原点逆时针旋转90,再向右平移1个单位长度,所得到的直线方程为()A.y。
18、1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线方程的点斜式点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为xx0.知识点二直线方程的斜截式斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在1.直线的点斜式方。
19、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。
20、2.2.2直线方程的几种形式第1课时直线的点斜式方程学习目标1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义知识点一直线的点斜式方程点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0且斜率不存在的直线为xx0.知识点二直线的斜截式方程1直线的斜截式方程斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在2.直线。