直线系方程

1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(12),斜率为

直线系方程Tag内容描述:

1、考点规范练 37 直线与方程一、基础巩固1.若直线 l 与直线 y=1,x=7 分别交于点 P,Q,且线段 PQ 的中点坐标为(1, -1),则直线 l 的斜率为( )A. B.- C.- D.13 13 32 232.若直线 mx+2y+m=0 与直线 3mx+(m-1)y+7=0 平行,则 m 的值为( )A.7 B.0 或 7 C.0 D.43.若直线 l1:kx+(1-k)y-3=0 和 l2:(k-1)x+(2k+3)y-2=0 互相垂直,则 k=( )A.-3 或- 1 B.3 或 1 C.-3 或 1 D.-1 或 34.若直线 l1:y=k(x-4)与直线 l2关于点(2,1)对称,则直线 l2经过定点 ( )A.(0,4) B.(0,2) C.(-2,4) D.(4,-2)5.在同一平面直角坐标系中,直线 l1:ax+y+b=0 和直线 l2:bx+y+a=0 的。

2、 直线与方程高考考点 命题分析 三年高考探源 考查频率直线方程2018 新课标全国 8,192018 新课标全国 192018 新课标全国 202017 新课标全国 14,202017 新课标全国52017 新课标全国 13,202016 新课标全国 162016 新课标全国 13直线的位置关系从近三年高考情况来看,对于直线的考查,一是考查直线倾斜角与斜率的关系、斜率公式;二是考查求直线的方程,平行、垂直的判定;三是以两直线的交点坐标为背景,与其他知识相结合,求直线方程、面积、距离公式以及中心对称与轴对称的求解,需熟练掌握基础知识和公式的变形,本节知识很少单独考查。

3、第2课时 直线方程的两点式和一般式,第二章 1.2 直线的方程,学习目标 1.掌握直线方程的两点式和一般式. 2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示. 3.能将直线方程的几种形式进行互相转换,并弄清各种形式的应用范围.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线方程的两点式,思考1 已知两点P1(x1,y1),P2(x2,y2),其中x1x2,y1y2,求通过这两点的直线方程.,思考2 过点(1,3)和(1,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢? 答案 不能, 因为110,而0不能做分母. 过。

4、第1课时 直线方程的点斜式,第二章 1.2 直线的方程,学习目标 1.了解由斜率公式推导直线方程的点斜式的过程. 2.掌握直线的点斜式方程与斜截式方程. 3.会利用直线的点斜式与斜截式方程解决有关的实际问题.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 直线方程的点斜式,思考1 如图,直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?,则x,y应满足yy0k(xx0).,思考2 经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示? 答案 斜率不存在的直线不能用点斜式表示,过点P。

5、专题 25 直线方程易错点概全一 【学习目标】1.理解直线的倾斜角、斜率、截距等概念,掌握直线的斜率计算公式.2.掌握直线方程的点斜式、两点式和一般式方程,了解直线方程的斜截式和截距式,能根据已知条件,选择恰当形式熟练地求出直线的方程.3.了解斜截式与一次函数的关系.4.掌握两直线平行、垂直、相交的条件,能灵活运用点到直线的距离公式及两直线平行、垂直的条件解决有关问题.5.掌握中心对称、轴对称等问题的几何特征和求解的基本方法.并能利用图形的对称性解决有关问题.二 【方法规律总结】1.直线的倾斜角、斜率及直线在坐标轴上的。

6、4.2 直线、射线、线段第 1课时 直线、射线、线段的概念情景导入 置疑导入 归纳导入 复习 导入 类比导入 悬念激趣情景导入 数学离不开生活,生活中处处有数学让我们一起看几个图片,共同感受一下身边的数学图 421绷紧的琴弦,手电筒射出的光线,向两方无限延伸的笔直的铁轨,它们可以分别抽象出哪些简单的平面图形?说明与建议 说明:教师通过学生熟悉的场景和事物引出所学内容,使学生感受到数学就在我们身边,数学离不开生活,渗透善于观察生活中的数学的学习意识同时也激发了学生的学习兴趣,加强了非智力因素的培养建议:重点让学生明。

7、第四章 几何图形初步,4.2 直线、射线、线段,第四章 几何图形初步,第1课时 直线、射线、线段的概念,第1课时 直线、射线、线段的概念,探究新知,活动1 知识准备,1填空:点动成_;线动成_;面动成_ 2画图:请你画出一条直线、一条射线、一条线段,答案 略,线,面,体,第1课时 直线、射线、线段的概念,活动2 教材导学,(1)经过一点O可以画几条直线? (2)经过两点A,B可以画直线吗?可以画几条?,答案 (1)无数条 (2)可以,1条,。

8、第1课时 直线、射线、线段的概念,知识目标,目标突破,第四章 几何图形初步,总结反思,知识目标,第1课时 直线、射线、线段的概念,1通过列举生活实例、动手画线,掌握基本事实:两点确定一条直线,并会用这个基本事实解决简单的实际问题 2通过观察、比较、讨论、归纳,理解直线、射线和线段三者之间的区别与联系,并会根据要求画直线、射线和线段 3通过观察图形、阅读教材,直观地了解平面上点和直线、直线和直线的位置关系,第1课时 直线、射线、线段的概念,目标一 会用“两点确定一条直线”解决实际问题,目标突破,B,第1课时 直线、射线、线段。

9、第2课时直线方程的两点式和一般式学习目标1.掌握直线方程的两点式和一般式.2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示.3.能将直线方程的几种形式进行互相转换,并弄清各种形式的应用范围.知识点一直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b且a0,b01斜率存在且不为0,直线不过原点知识点三直线方程的一般式1.一般式方程形式AxByC0条件A,B不同。

10、第2课时直线方程的两点式和一般式一、选择题1.若方程AxByC0表示直线,则A,B应满足的条件为()A.A0 B.B0C.AB0 D.A2B20考点直线的一般式方程题点直线的一般式方程的概念答案D解析方程AxByC0表示直线的条件为A,B不能同时为0,即A2B20.2.过坐标平面内两点P1(2,0),P2(0,3)的直线方程是()A.1 B.0C.1 D.1考点直线的截距式方程题点利用截距式求直线方程答案C3.直线ymx3m2(mR)必过定点()A.(3,2) B.(3,2)C.(3,2) D.(3,2)答案A解析由ymx3m2,得y2m(x3),所以直线必过点(3,2).4.直线l的方程为AxByC0,若直线l过原点和二、四象限,则()A.C0,B0 B.A。

11、第3课时直线的一般式方程基础过关1.直线(2m25m2)x(m24)y5m0的倾斜角为45,则m的值为()A.2B.2C.3D.3答案D解析由已知得m240,且1,解得:m3或m2(舍去).2.直线l的方程为AxByC0,若直线l过原点和二、四象限,则()A.C0,B0B.A0,B0,C0C.AB0,C0答案D解析通过直线的斜率和截距进行判断.3.已知直线axby10在y轴上的截距为1,且它的倾斜角是直线xy0的倾斜角的2倍,则a,b的值分别为()A.,1B.,1C.,1D.,1答案D解析原方程化为1,1,b1.又axby10的斜率ka,且xy0的倾斜角为60,ktan120,a,故选D.4.直线ax3my2a0(m0)过点(1,1),则直线的斜率k等于()。

12、2.2.2直线方程的几种形式第1课时直线的点斜式方程基础过关1.直线的点斜式方程yy0k(xx0)可以表示()A.任何一条直线B.不过原点的直线C.不与坐标轴垂直的直线D.不与x轴垂直的直线答案D解析点斜式方程适用的前提条件是斜率存在,故其可表示不与x轴垂直的直线.2.经过点(1,1),斜率是直线yx2的斜率的2倍的直线方程是()A.x1B.y1C.y1(x1) D.y12(x1)答案C解析由方程知,已知直线的斜率为,所求直线的斜率是,由直线方程的点斜式可得方程为y1(x1),选C.3.与直线y2x1的斜率互为负倒数,且在y轴上的截距为4的直线的斜截式方程是()A.yx4B.y2x4C.y2x4D.yx。

13、第2课时直线的两点式方程基础过关1.一条直线不与坐标轴平行或重合,则它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式答案B解析由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式.由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式.故选B.2.直线1过第一、二、三象限,则()A.a0,b0B.a0,b0D.a0.3.以A(1,3),B(5,1)为端点的线段的垂直平分线方程。

14、高考必备公式、结论、方法、细节五:直线方程与圆的方程 一、必备公式 1斜率公式 (1)若直线 l 的倾斜角 90 ,则斜率 k . (2)P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1x2,则 l 的斜率 k . 2直线方程的五种形式 名称 方程 适用范围 点斜式 不含直线 xx0 斜截式 ykxb 不含垂直于 x 轴的直线 两点式 yy1 y2y1 xx1 x2。

15、2.2直线的方程22.1直线方程的概念与直线的斜率一、选择题1若直线过坐标平面内两点(1,2),(4,2),则此直线的倾斜角是()A30 B45 C60 D90考点直线的倾斜角题点倾斜角、斜率的计算答案A解析由题意知k,直线的倾斜角为30.2已知直线l的斜率的绝对值为,则直线l的倾斜角为()A60 B30C60或120 D30或150考点直线的图象特征与倾斜角、斜率的关系题点倾斜角、斜率的计算答案C解析由题意知|tan |,即tan 或tan ,直线l的倾斜角为60或120.3已知经过点P(3,m)和点Q(m,2)的直线的斜率为2,则m的值为()A1 B1 C2 D.考点直线的斜率题点倾斜角、斜率的计算答。

16、2.2直线的方程2.2.1直线方程的概念与直线的斜率基础过关1.下列说法中,正确的是()A.直线的倾斜角为,则此直线的斜率为tanB.直线的斜率为tan,则此直线的倾斜角为C.若直线的倾斜角为,则sin0D.任意直线都有倾斜角,且90时,斜率为tan答案D解析对于A,当90时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan,但只有0180时,才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,0,sin0,故C不正确,故选D.2.若A、B两点的横坐标相等,则直线AB的倾斜角和斜率分别是()A.45,1B.135,1C.90,不存在D.180,不存在答案C解析由于A、B两点的横坐标相等,所。

17、2.2直线的方程22.1直线方程的概念与直线的斜率学习目标1.了解直线的方程、方程的直线的概念.2.理解直线的倾斜角、斜率,掌握过两点的直线的斜率公式.3.体会用斜率和倾斜角刻划直线的倾斜程度,并掌握它们之间的关系知识点一直线的方程与方程的直线1两个条件(1)以一个方程的解为坐标的点都在某条直线上(2)这条直线上的点的坐标都是这个方程的解2一个结论这个方程叫做这条直线的方程,这条直线叫做这个方程的直线知识点二直线的倾斜角与斜率名称斜率倾斜角定义直线ykxb中的系数k叫做这条直线的斜率x轴正向与直线向上的方向所成的角叫做这条。

18、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。

19、1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线方程的点斜式点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为xx0.知识点二直线方程的斜截式斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在1.直线的点斜式方。

【直线系方程】相关PPT文档
【直线系方程】相关DOC文档
标签 > 直线系方程[编号:61218]