第第 5 讲讲 找规律找规律 典型问题典型问题 兴趣篇 1. 找规律,填空: (1)2,6,10,14,18,22,_,_,34; (2)1,3,9,27,81, _,729; (3)1,1,2,3,5,8,13,21,_,_,89; (4)1,4,9,16,25,_,第第 4 讲讲 包含与排除包含
导引 数阵Tag内容描述:
1、第第 5 讲讲 找规律找规律 典型问题典型问题 兴趣篇 1. 找规律,填空: (1)2,6,10,14,18,22,_,_,34; (2)1,3,9,27,81, _,729; (3)1,1,2,3,5,8,13,21,_,_,89; (4)1,4,9,16,25,_。
2、第第 4 讲讲 包含与排除包含与排除 内容概念: 有重叠部分的若干对象的计数问题,能利用文氏图进行辅助分析,弄清文氏图中每部分的含义;结合 文氏图理解两个对象和三个对象的容斥原理;灵活处理具有一些不确定性的计数问题,以及其他形式的重 复计数问题。
典型问题: 兴趣篇兴趣篇 1. 暑假里,小悦和冬冬一起讨论“金陵十八景”。
他们发现十八景中的每一处都有人去过,而且有五处是两 人都去过的。
如果小悦去过其。
3、第第 9 讲讲 比较与估算比较与估算 内容概述 与小数和分数相关的比较问题,涉及多个数之间的比较,以及算式之间的比较, 需要进行估算的计算问题, 例如求近似值或求整数部分等,估算的关键是进行恰当的放缩。
典型问题 兴趣篇兴趣篇 1.分别比较下面每组中两个数的大小: (1)0.375与 7 19 ; (3)0.423与 3 7 ; (3)1.347与 31 23 。
2.有 8 个数,0.51、。
4、第第 15 讲:圆与扇形讲:圆与扇形 内容概述内容概述 掌握圆与扇形的基本概念和性质,以及它们的周长和面积计算公式,并能熟练运用公式处理相关的几何问 题;学习如何利用割补法和包含排除的思想计算图形中特定部分的面积;学会分析几何图形的运动过程, 并由此得出点的轨迹和图形扫过的区域。
典型问题典型问题 兴趣篇兴趣篇 1. 已知一个扇形的圆心角为已知一个扇形的圆心角为120,半径为,半径为 2,这个扇形。
5、第第 7 讲讲 行程问题四行程问题四 内容概述 流水行船问题与环形问题。
流水行船问题中,注意水速对实际速度的影响,初步了解速度的相对性;环形 问题中,注意相遇和追及的周期性。
典型问题 兴趣篇兴趣篇 1.一条船顺流行驶 40 千米需要 2 小时。
水流速度为每小时 2 千米。
这条船逆流行驶 40 千米需要多少小时? 2.两地相距 480 千米,一艘轮船在两地之间往返航行,顺流行驶一次需要 16 小。
6、第第 16 讲讲 构造论证一构造论证一 内容概述 各种形式的构造问题,解题时要不断地调整设计方案以满足全部要求,有时应从简单情形入手寻找规律。
本讲的论证问题,一般采用奇偶性或整除性的分析方法。
典型问题 兴趣篇 1.如图 16-1,用1 2和1 3两种规格的小长方形地板砖铺满地面,至少需要地板砖多少块? 2.国际象棋的皇后可以控制她所在的横线、竖线和斜线,图 16-2 中一个皇后(图中五角星)。
7、 第第 7 讲讲 周期问题周期问题 典型问题典型问题 兴趣篇 1. 如图,由一系列黑、白三角形按一定的规律排成一行。
请问:第 26 个图形应该是什么样子? 2. 在学校运动会的开幕式上,46 名同学组成仪仗队站成一排。
如图所示,每人手里都举着一面彩旗,从左 到右颜色依次是红、黄、蓝、绿四种颜色依次循环。
最右侧的同学手里的彩旗是多少颜色的? 3. 如图所示,将自然数从 1 开始顺次写在。
8、第第 17 讲讲 计算综合一计算综合一 内容概述 了解等比数列的基本概念,学会利用错位相减的方法进行求和;灵活使用各种方法简化比较复杂的分数算 式;具有一定综合性的“定义新运算”问题;较复杂的数列与数表问题。
典型问题 兴趣篇兴趣篇 1.计算: (1)1248163264128256; (2) 11111111 1 248163264128256 。
2.计算: 23456 33333 。
9、第第 11 讲讲 约数与倍数约数与倍数 内容概述 掌握约数与倍数的概念,学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方 法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题。
典型问题 兴趣篇兴趣篇 1.(1)请写出 105 的所有约数; (2)请写出 72 的所有约数。
2.(1)20000 的约数有多少个?(2)720 的约数有多少个? 3.计算: (1)。
10、第第 19 讲讲 工程问题工程问题 内容概述 掌握工作总量、工作效率、工作时间的基本概念和关系;理解“单位 1”的概念并灵活应用;熟悉多人、多工 程、效率变化等各种形式的问题;学会处理“水池注水”形式的问题。
典型问题 兴趣篇兴趣篇 1.甲、乙两辆车运一堆煤,如果只用甲车运,15 小时可以运完;如果只用乙车运,10 小时可以运完。
请问: (1)如果两车一起运,多少小时可以运完? (2)如果甲车从早。
11、第第 10 讲:讲:几何计数几何计数 内容概述内容概述 合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方 格表中长方形个数的计算方法;注意利用图形的对称性来简化计算。
典型问题典型问题 兴趣篇兴趣篇 1.如图 10-1,线段ABBCCDDE、的长度都是 3 厘米。
请问:图中一共有多少条线段?这些线段的长度 之和是多少厘米? 2.小明把巧克力棒摆成了。
12、第第 21 讲讲 数数字字问题问题 内容概述内容概述 各种与数字有关的数字谜问题。
学会位值原理的分析方法;综合应用已学的数字谜技巧和数论知识。
兴趣篇兴趣篇 1.一个两位等于它的数字和的 6 倍,求这个两位数。
2.今年是 2008 年,小王说:“我的年龄正好与我出生那年年份的四个数字之和相同”。
请问:小王今年多大? 3.用 3 个不同的数字组成 6 个不同的三位数,这 6 个三位数的和是。
13、第第 20 讲讲 幻方与数阵图扩展幻方与数阵图扩展 兴趣篇兴趣篇 1、把 1,2,9 填入图中 9 个空白圆圈内,使得三个圆周及三条线段上 3 个数之和都相等。
2、 (1)如图 1,在 33 的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和 都相等。
(2)如图 2,在 44 的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和 都相等。
3、在。
14、第第 12 讲讲 余数余数 内容概述:内容概述: 掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法。
学会利用余数的可加性、可减 性和可乘性计算余数;学会运用周期性处理各类余数计算问题;学会求解“物不知数”问题。
典型问题 兴趣篇兴趣篇 1. 72 除以一个数,余数是除以一个数,余数是 商可能是多少?。
商可能是多少? 2. 100 和和 84 除以同一个数,得到的余数相同,但余数。
15、第第 2 讲讲 数的整除数的整除 内容概述: 掌握整除的概念和基本性质,掌握能被某些特殊数整除的数的特征。
通过分析整除特征解决数的补填 问题,以及多位数的构成问题等。
典型问题: 兴趣篇兴趣篇 1.下面有 9 个自然数:14,35,80,152,650,434,4375,9064,2412在这些自然数中,请问: (1)有哪些数能被 2 整除?哪些能被 4 整除?哪些能被 8 整除? (2)有哪。
16、 第第 10 讲讲平均数问题平均数问题 兴趣篇兴趣篇 1、阿奇参加射击比赛,他一共打了 10 枪,每枪都射中靶子,位置如图中的“”所示。
图中数字表示击 中靶子各部位能得到的分数。
请问:阿奇此次打靶的平均分是多少? 2、 请求出 103,109,105,101,110,102,106,104 这 8 个数的平均数。
3、飞碟工厂一周生产的机器台数的统计表破损了,如图所示,表中缺少几个数字,请。
17、 第第 4 讲讲 数阵图初步数阵图初步 兴趣篇兴趣篇 1、 在图中的三个圆圈内填入三个不同的自然数,使得三角形每条边上的三个数之和都等于 1 2、 请分别将 1,2,4,6 这四个数填在图中的各空白区域内,使得每个圆圈里四个数之和都等于 1 3、 如图所示,请在三个空白圆圈内填入三个数,使得每条直线上三个数之和都相等。
4、 把 1 至 8 分别填入图的八个方格内,使得各列上两。
18、试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能 填最大数、 最小数或中间数; 方法二:公式法公式法,线和线数=数字和+重叠数重叠次数;重叠次数=线数-1 (2 2)封闭型数阵图)封闭型数阵图 公式:线和线数=数字和+重叠数之和 (3 3)复合型数阵图)复合型数阵图 综合了辐射型和封闭型数阵图的特点,要具体情况具体分析。
考点一:考点一:辐射型数阵图辐射型数阵图 例例1 1、 把15这五个数分别填在下图中的方格中, 使得横行三数之和与竖列三数之和都等于 教学目标 知识梳理 典例分析 【解析】 中间方格中的数很特殊, 横行的三个数有它, 竖列的三个数也有它, 我们把它叫做“重 叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重 叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于 9,所 以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=重叠数求出来了,其余各数就好 填了(见右上图)。
例例 2 2、将 17 这七个。
19、P实战演练S归纳总结教学目标 学会掌握数阵图形的基本分析方法; 会运用数阵图的几类解法。
授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、数阵图 把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图。
数阵是一种由幻方演变而来的数字图。
二、数阵图的分类 封闭型数阵图、辐射型数阵图和复合型数阵图。
三、数阵图的解法(1)辐射型数阵图方法一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、 最小数或中间数;方法二:公式法,线和线数=数字和+重叠数重叠次数;重叠次数=线数-1(2)封闭型数阵图 公式:线和线数=数字和+重叠数之和(3)复合型数阵图 综合了辐射型和封闭型数阵图的特点,要具体情况具体分析。
典例分析 考点一:辐射型数阵图例1、把15这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于 。
20、P实战演练S归纳总结教学目标 学会掌握数阵图形的基本分析方法; 会运用数阵图的几类解法。
授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、数阵图 把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图。
数阵是一种由幻方演变而来的数字图。
二、数阵图的分类 封闭型数阵图、辐射型数阵图和复合型数阵图。
三、数阵图的解法(1)辐射型数阵图方法一:尝试法,即去掉中间数时剩下的数应该两两一对,每队和相等,因此最中间数只能填最大数、 最小数或中间数;方法二:公式法,线和线数=数字和+重叠数重叠次数;重叠次数=线数-1(2)封闭型数阵图 公式:线和线数=数字和+重叠数之和(3)复合型数阵图 综合了辐射型和封闭型数阵图的特点,要具体情况具体分析。
典例分析 考点一:辐射型数阵图例1、把15这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于 。