的数字系数的一元 二次方程, 理解各种解 法的依据 能选择恰当的方法解一 元二次方程;会用方程 的根的判别式判别方程 根的情况 能利用根的判别式说明含有字母系 数的一元二次方程根的情况及由方 程根的情况确定方程中待定系数的 取值范围;会用配方法对代数式做 简单的变形;会应用一元二次方程 解决简单的实
初中数学复习课件Tag内容描述:
1、的数字系数的一元 二次方程, 理解各种解 法的依据 能选择恰当的方法解一 元二次方程;会用方程 的根的判别式判别方程 根的情况 能利用根的判别式说明含有字母系 数的一元二次方程根的情况及由方 程根的情况确定方程中待定系数的 取值范围;会用配方法对代数式做 简单的变形;会应用一元二次方程 解决简单的实际问题 板块一 一元二次方程的概念 一元二次方程: 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程 一元二次方程的一般形式: 2 0 (0)axbxca,a为二次项系数,b为一次项系数,c为常数项 一元二次方程的识别: 要判断一个方程是否是一元二次方程,必须符合以下三个标准: 一元二次方程是整式方程,即方程的两边都是关于未知数的整式 一元二次方程是一元方程,即方程中只含有一个未知数 一元二次方程是二次方程,也就是方程中未知数的最高次数是2 任何一个关于x的一元二次方程经过整理都可以化为一般式 2 0axbxc0a 要特别注意对于关于x的方程 2 0axbxc,当0a 时,方程是一元二次方程;当0a 且0b 时, 方程。
2、的数字系数的一元 二次方程, 理解各种解 法的依据 能选择恰当的方法解一 元二次方程;会用方程 的根的判别式判别方程 根的情况 能利用根的判别式说明含有字母系 数的一元二次方程根的情况及由方 程根的情况确定方程中待定系数的 取值范围;会用配方法对代数式做 简单的变形;会应用一元二次方程 解决简单的实际问题 板块一 一元二次方程的概念 一元二次方程: 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程 一元二次方程的一般形式: 2 0 (0)axbxca,a为二次项系数,b为一次项系数,c为常数项 一元二次方程的识别: 要判断一个方程是否是一元二次方程,必须符合以下三个标准: 一元二次方程是整式方程,即方程的两边都是关于未知数的整式 一元二次方程是一元方程,即方程中只含有一个未知数 一元二次方程是二次方程,也就是方程中未知数的最高次数是2 任何一个关于x的一元二次方程经过整理都可以化为一般式 2 0axbxc0a 要特别注意对于关于x的方程 2 0axbxc,当0a 时,方程是一元二次方程;当0a 且0b 时, 方程。
3、边形的概念、 判定和性质, 会用平行四边形的性质和判定解决简 单问题 会运用平行四边形 的知识解决有关问 题 矩形 会识别矩形 掌握矩形的概念、性质和判定,会用 矩形的性质和判定解决简单问题 会用矩形的知识解 决有关问题 菱形 会识别菱形 掌握菱形的概念、性质和判定,会用 菱形的性质和判定解决简单问题 会用菱形的知识解 决有关问题 正方形 会识别正方形 掌握正方形的概念、性质和判定,会 用正方形的性质和判定解决简单问题 会用正方形的知识 解决有关问题 梯形 会识别梯形、 等腰梯形; 了解 等腰梯形的性质和判定 掌握梯形的概念,会用等腰梯形的性 质和判定解决简单问题 一、一、平行四边形的性质平行四边形的性质 平行四边形的边:平行四边形的对边平行且对边相等 平行四边形的角:平行四边形的对角相等,邻角互补 平行四边形的对角线:平行四边形的对角线互相平分 平行四边形的对称性:平行四边形是中心对称图形 平行四边形的周长:一组邻边之和的2倍 平行四边形的面积:底乘以高 二、二、平行四边形的判定平行四边形的判定 两组对边分别平行的四边形是平行四边形 两组对边分别相等的四边形是平行四边形。
4、 等腰三角形直角、 三角形 了解等腰三角形、 等边三角形 和直角三角形的概念, 会识别 这三种图形, 并理解这三种图 形的性质和判定 能用等腰三角形、等边三角形和直角 三角形的性质和判定解决简单问题 能用等腰三角形、 等边三角形和直角 三角形的知识解决 有关问题 全等三角形 了解全等三角形的概念, 了解 相似三角形和全等三角形之 间的关系 掌握两个三角形全等的条件和性质; 会应用三角形全等的性质和判定解决 有关问题 会利用全等三角形 的知识解释或证明 经过图形变换后得 到 的图形与原图形对 应元素间的关系 一、三角形的基本概念: 三角形的定义三角形的定义:由三条不在同一条直线上的线段首尾顺次连结组成的平面图形叫做三角形 三角形具有稳定性 三角形的内角三角形的内角:三角形的每两条边所组成的角叫做三角形的内角 在同一个三角形内,大边对大角 三角形的外角三角形的外角:三角形的任意一边与另一边的反向延长线所组成的角叫做三角形的外角 三角形的分类三角形的分类: () () (): 直角三角形:三角形中有一个角是直角 三。
5、际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a )的函数称为x的二次函数,其中x为自变量, y为因变量,a、b、c分别为二次函数的二次项、一次项和常数项系数 注意:和一元二次方程类似,二次项系数0a ,而b、c可以为零二次函数的自变量的取值范围是 全体实数 黑体小四 二、二次函数的图象 黑体小四 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大 温馨提示:几条抛物线的解析式中,若a相等,则其形状相同,即若a相等,则开口及形状相同,若 a互为相反数,则形状相同、开口相反 (2)b和a共同决定抛物线对称轴的位置(抛物线的对称轴: 2 b x a ) 当0b 时,抛物线的对称轴为y轴; 当a、b同号时,对称轴在y轴的左侧; 当a、b异号时,对称轴在y轴的右侧 (3)c的大小决定抛物线与y轴交点的位置(抛物线与y。
6、际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a )的函数称为x的二次函数,其中x为自变量, y为因变量,a、b、c分别为二次函数的二次项、一次项和常数项系数 注意:和一元二次方程类似,二次项系数0a ,而b、c可以为零二次函数的自变量的取值范围是 全体实数 黑体小四 二、二次函数的图象 黑体小四 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大 温馨提示:几条抛物线的解析式中,若a相等,则其形状相同,即若a相等,则开口及形状相同,若 a互为相反数,则形状相同、开口相反 (2)b和a共同决定抛物线对称轴的位置(抛物线的对称轴: 2 b x a ) 当0b 时,抛物线的对称轴为y轴; 当a、b同号时,对称轴在y轴的左侧; 当a、b异号时,对称轴在y轴的右侧 (3)c的大小决定抛物线与y轴交点的位置(抛物线与y。
7、际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a )的函数称为x的二次函数,其中x为自变量, y为因变量,a、b、c分别为二次函数的二次项、一次项和常数项系数 注意:和一元二次方程类似,二次项系数0a ,而b、c可以为零二次函数的自变量的取值范围是 全体实数 黑体小四 二、二次函数的图象 黑体小四 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大 温馨提示:几条抛物线的解析式中,若a相等,则其形状相同,即若a相等,则开口及形状相同,若 a互为相反数,则形状相同、开口相反 (2)b和a共同决定抛物线对称轴的位置(抛物线的对称轴: 2 b x a ) 当0b 时,抛物线的对称轴为y轴; 当a、b同号时,对称轴在y轴的左侧; 当a、b异号时,对称轴在y轴的右侧 (3)c的大小决定抛物线与y轴交点的位置(抛物线与y。
8、际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a )的函数称为x的二次函数,其中x为自变量, y为因变量,a、b、c分别为二次函数的二次项、一次项和常数项系数 注意:和一元二次方程类似,二次项系数0a ,而b、c可以为零二次函数的自变量的取值范围是 全体实数 黑体小四 二、二次函数的图象 黑体小四 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大 温馨提示:几条抛物线的解析式中,若a相等,则其形状相同,即若a相等,则开口及形状相同,若 a互为相反数,则形状相同、开口相反 (2)b和a共同决定抛物线对称轴的位置(抛物线的对称轴: 2 b x a ) 当0b 时,抛物线的对称轴为y轴; 当a、b同号时,对称轴在y轴的左侧; 当a、b异号时,对称轴在y轴的右侧 (3)c的大小决定抛物线与y轴交点的位置(抛物线与y。
9、边三角形 和直角三角形的概念, 会识别 这三种图形, 并理解这三种图 形的性质和判定 能用等腰三角形、等边三角形和直角 三角形的性质和判定解决简单问题 能用等腰三角形、 等边三角形和直角 三角形的知识解决 有关问题 版块一 轴对称与轴对称图形 轴对称的有关概念轴对称的有关概念 1 对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么这两个图形成轴对称,这条直线就 是对称轴。
2 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这 条直线叫做对称轴。
3 轴对称指两个图形,轴对称图形是指一个图形。
4 成轴对称的两个图形一定是全等形;全等的两个图形不一定成轴对称。
轴对称及轴对称图形的性质 1 如果两个图形关于某一直线对称,则对应点所连的线段被对称轴垂直平分;对应线段相等,对应角相 等。
2 轴对称图形中对应点所连的线段被对称轴垂直平分;轴对称图形的对应线段相等,对应角相等。
3 线段有两条对称轴;角有两条对称轴;等腰三角形(非等边)有两条对称轴;等边三角形有三条对称 轴;等腰梯形有一条对称轴;矩形有两条对称轴;菱形有两条。
10、际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a )的函数称为x的二次函数,其中x为自变量, y为因变量,a、b、c分别为二次函数的二次项、一次项和常数项系数 注意:和一元二次方程类似,二次项系数0a ,而b、c可以为零二次函数的自变量的取值范围是 全体实数 黑体小四 二、二次函数的图象 黑体小四 1二次函数图象与系数的关系 (1)a决定抛物线的开口方向 当0a 时,抛物线开口向上;当0a 时,抛物线开口向下反之亦然 a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大 温馨提示:几条抛物线的解析式中,若a相等,则其形状相同,即若a相等,则开口及形状相同,若 a互为相反数,则形状相同、开口相反 (2)b和a共同决定抛物线对称轴的位置(抛物线的对称轴: 2 b x a ) 当0b 时,抛物线的对称轴为y轴; 当a、b同号时,对称轴在y轴的左侧; 当a、b异号时,对称轴在y轴的右侧 (3)c的大小决定抛物线与y轴交点的位置(抛物线与y。
11、形相似三角形 了解两个三角形相似的概念 会利用相似三角形的性质与判 定进行简单的推理和计算;会利 用三角形的相似解决实际问题 相似多边形相似多边形 知道相似多边形及其性质;认识 现实生活中物体的相似 会用相似多边形的性质解决简 单问题 一、比例的性质 1, ac adbc bd 这一性质称为比例的基本性质,由它可推出许多比例形式; 2 acbd bdac (反比定理); 3 acab bdcd (或 dc ba )(更比定理); 4 acabcd bdbd (合比定理); 5 acabcd bdbd (分比定理); 6 acabcd bdabcd (合分比定理); 7 (等比定理). 二、相似多边形 知识点睛 中考要求 相似三角形 对应角相等、对应边成比例的多边形,叫做相似多边形,相似多边形对应边的比叫做相似比 三、三角形相似的判定(除相似三角形的定义外) 1平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 2如果一个三角形的两个角与另一个三角形的两个角对应相等。
12、边三角形 和直角三角形的概念, 会识别 这三种图形, 并理解这三种图 形的性质和判定 能用等腰三角形、等边三角形和直角 三角形的性质和判定解决简单问题 能用等腰三角形、 等边三角形和直角 三角形的知识解决 有关问题 版块一 轴对称与轴对称图形 轴对称的有关概念轴对称的有关概念 1 对于两个图形,如果沿一条直线对折后,它们能够完全重合,那么这两个图形成轴对称,这条直线就 是对称轴。
2 如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这 条直线叫做对称轴。
3 轴对称指两个图形,轴对称图形是指一个图形。
4 成轴对称的两个图形一定是全等形;全等的两个图形不一定成轴对称。
轴对称及轴对称图形的性质 1 如果两个图形关于某一直线对称,则对应点所连的线段被对称轴垂直平分;对应线段相等,对应角相 等。
2 轴对称图形中对应点所连的线段被对称轴垂直平分;轴对称图形的对应线段相等,对应角相等。
3 线段有两条对称轴;角有两条对称轴;等腰三角形(非等边)有两条对称轴;等边三角形有三条对称 轴;等腰梯形有一条对称轴;矩形有两条对称轴;菱形有两条。
13、一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做 旋转角,如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的的对应点如图 R R Q P Q P O 注意:研究旋转问题应把握两个元素:旋转中心与旋转角 每一组对应点所构成的旋转角相等 【例1】 在平面内, 把一个图形绕着某_沿着某个方向转动_的图形变换叫做旋转这个点 O 叫 做_,转动的角叫做_因此,图形的旋转是由_和_决定的 【解析】略 【答案】一点 O,一个角度,旋转中心,旋转角,旋转中心,旋转角 【巩固】下图中,不是旋转对称图形的是( ) 中考要求 例题精讲 中考复习:几何变换之旋转 【解析】略 【答案】B 【例2】 有下列四个说法,其中正确说法的个数是( ) 图形旋转时,位置保持不变的点只有旋转中心; 图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度; 图形旋转时,对应点与旋转中心的距离相等; 图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化 A。
14、有关的简单问题 能综合运用几何知识解 决与圆周角有关的问题 直线与圆的 位置关系 了解直线与圆的位置关系; 了解切线的概念,理解切线 与过切点的半径之间关系; 会过圆上一点画圆的切线 能判定一条直线是否为圆的切线;能利用直 线和圆的位置关系解决简单问题 能解决与切线有关的问 题 切线长 了解切线长的概念 会根据切线长知识解决简单问题 圆与圆的位 置关系 了解圆与圆的位置关系 能利用圆与圆的位置关系解决简单问题 一、圆的相关概念 1. 圆的定义 (1) 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转 所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径 (2) 集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径 (3) 圆的表示方法:通常用符号表示圆,定义中以O为圆心,OA为半径的圆记作”O“,读作” 圆O“ (4) 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同 心圆;能够重合的两个圆叫做等圆 注意:注意:同圆或等圆的半径相等 2. 弦和弧 (1) 弦:连结。
15、初中数学开学第一课初中数学开学第一课 汇报汇报人人:XXXX 汇报日期:汇报日期:20212021 数 学 的 学 习 特 点 和 要 求 公 开 课数 学 的 学 习 特 点 和 要 求 公 开 课 1 1 为什么要学数学为什么要学数学 。
16、一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做 旋转角,如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的的对应点如图 R R Q P Q P O 注意:研究旋转问题应把握两个元素:旋转中心与旋转角 每一组对应点所构成的旋转角相等 【例1】 在平面内, 把一个图形绕着某_沿着某个方向转动_的图形变换叫做旋转这个点 O 叫 做_,转动的角叫做_因此,图形的旋转是由_和_决定的 【巩固】下图中,不是旋转对称图形的是( ) 中考要求 例题精讲 中考复习:几何变换之旋转 【例2】 有下列四个说法,其中正确说法的个数是( ) 图形旋转时,位置保持不变的点只有旋转中心; 图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度; 图形旋转时,对应点与旋转中心的距离相等; 图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化 A1 个 B2 个 C3 个 D4 个 【巩固】如图,把菱形 ABOC 绕点 O 顺时针旋转得到菱。
17、有关的简单问题 能综合运用几何知识解 决与圆周角有关的问题 直线与圆的 位置关系 了解直线与圆的位置关系; 了解切线的概念,理解切线 与过切点的半径之间关系; 会过圆上一点画圆的切线 能判定一条直线是否为圆的切线;能利用直 线和圆的位置关系解决简单问题 能解决与切线有关的问 题 切线长 了解切线长的概念 会根据切线长知识解决简单问题 圆与圆的位 置关系 了解圆与圆的位置关系 能利用圆与圆的位置关系解决简单问题 一、圆的相关概念 1. 圆的定义 (1) 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转 所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径 (2) 集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,顶点叫做圆心,定长叫做半径 (3) 圆的表示方法:通常用符号表示圆,定义中以O为圆心,OA为半径的圆记作”O“,读作” 圆O“ (4) 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同 心圆;能够重合的两个圆叫做等圆 注意:注意:同圆或等圆的半径相等 2. 弦和弧 (1) 弦:连结。
18、可以将互不相邻的元素集中到一起,使我们能够更有效地利用条件;通过几何变换还可以自然地利用 图形本身的对称性,有意无意地将我们平时注意不到的条件运用到解题中 几何变换可以分为以下几类: 1 平移:即保持点沿同一方向移动相同距离,且保持线段平行的变换平移的性质有:保持角度不变, 保持几何图形全等 2 轴对称:将图形沿直线翻折轴对称的性质有:对应点的连线被对称轴垂直平分,对应线段的交点在 对称轴上,保持几何图形全等 3 中心对称:将图形关于一个点对称中心对称的性质有:对应点的连线的中点永远是对称中心,保持 几何图形全等 4 旋转:即将平面图形绕一个定点旋转一个角度旋转的性质有:对应点到旋转中心的距离相等,对应 直线的夹角等于旋转角,保持几何图形全等 5 位似:将图形关于一个点作放大或缩小变换初中几何暂时不涉及这部分内容 二、平移变换 1平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不 改变图形的形状和大小 注:平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换 图形的平移有两个要素。
19、称数学思想,强调操作过程时,称数学方法。
,常用的数学思想方法,常用数学思想:建模思想、统计思想、最优化思想、转化化与化归思想、类比思想、分类思想、整体思想、数形结合思想、方程思想、函数思想等。
,常用数学方法:配方法、换元法、待定系数法、参数法、 构造法、特殊值法等。
,整体思想,整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,从宏观整体上认识问题的实质,把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理的思想方法。
,教学体现,多项式与多项式相乘的法则探索 二元一次方程组的解法 代数式求值 分解因式 整式的相关计算,应 用,2、,已知方程组,的解是,,则a+b= .,3、,1、若x=1时,代数式ax3+bx+7的值为4,则当x= -1时, 求ax3+bx+7的值为;,4、,5、如图,在高2米,坡角为30的楼梯表面铺地毯,则地毯的长度 至少需要 米。
,6、如图,A,B,C两两不相交,且半径都是0.5cm, 则图中的阴影面积为 。
20、可以将互不相邻的元素集中到一起,使我们能够更有效地利用条件;通过几何变换还可以自然地利用 图形本身的对称性,有意无意地将我们平时注意不到的条件运用到解题中 几何变换可以分为以下几类: 1 平移:即保持点沿同一方向移动相同距离,且保持线段平行的变换平移的性质有:保持角度不变, 保持几何图形全等 2 轴对称:将图形沿直线翻折轴对称的性质有:对应点的连线被对称轴垂直平分,对应线段的交点在 对称轴上,保持几何图形全等 3 中心对称:将图形关于一个点对称中心对称的性质有:对应点的连线的中点永远是对称中心,保持 几何图形全等 4 旋转:即将平面图形绕一个定点旋转一个角度旋转的性质有:对应点到旋转中心的距离相等,对应 直线的夹角等于旋转角,保持几何图形全等 5 位似:将图形关于一个点作放大或缩小变换初中几何暂时不涉及这部分内容 二、平移变换 1平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不 改变图形的形状和大小 注:平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换 图形的平移有两个要素。