ampamp1677 正切函数 课时对点练含答案

3.3三角函数的积化和差与和差化积 一、选择题 1.sin 20sin 40sin 80的值为() A.0 B. C. D.1 答案A 解析原式2sin 30cos 10sin 80 cos 10sin 80sin 80sin 800. 2.化简的结果为() A.tan B.tan 2 C. D.

ampamp1677 正切函数 课时对点练含答案Tag内容描述:

1、3.3三角函数的积化和差与和差化积一、选择题1.sin 20sin 40sin 80的值为()A.0 B. C. D.1答案A解析原式2sin 30cos 10sin 80cos 10sin 80sin 80sin 800.2.化简的结果为()A.tan B.tan 2 C. D.答案B解析tan 2.3.若AB,则cos2Acos2B的取值范围是()A. B.C. D.答案C解析cos2Acos2B1(cos 2Acos 2B)1coscos1cos(AB)cos(AB)1coscos(AB)1cos(AB).cos(AB)1,1,cos2Acos2B.4.求值:sin 20。

2、第2课时正切函数的图象与性质一、选择题1函数ytan的定义域是()ARB.C.D.答案B2函数f(x)tan的单调递增区间为()A.,kZB(k,(k1),kZC.,kZD.,kZ答案C3函数f(x)|tan 2x|是()A周期为的奇函数 B周期为的偶函数C周期为的奇函数 D周期为的偶函数考点正切函数周期性与对称性题点正切函数周期性、奇偶性答案D解析f(x)|tan(2x)|tan 2x|f(x),故f(x)为偶函数,T.4与函数ytan的图象不相交的一条直线是()Ax ByCx Dy考点正切函数的图象题点正切函数的图象答案C解析令2xk(kZ),得x(kZ)令k0,得x.5已知f(x)tan,则使f(x)成立的x的集合是()A.,kZB.,kZC.,。

3、3二倍角的三角函数(二) 基础过关1下列各式与tan 相等的是()A. B.C. D.解析tan .答案D2已知180360,则cos 的值为()A B. C D. 答案C3使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A. B. C. D.解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin 2x.答案D4已知sincos,且(,3),则tan_.解析由条件知(,),tan0.由sincos,1sin .sin ,cos ,tan2.答案25函数f(x)sin(2x)2sin2x的最小正周期是_解析f(x)sin 2xcos 2x(1cos 2x)sin。

4、1同角三角函数的基本关系基础过关1如果是第二象限的角,下列各式中成立的是()Atan Bcos Csin Dtan 解析由商数关系可知A、D均不正确,当为第二象限角时,cos 0,故B正确答案B2已知2,则sin cos 的值是()A.B C.D解析由题意得sin cos 2(sin cos ),(sin cos )24(sin cos )2,解得sin cos .答案C3已知是第二象限的角,tan ,则cos 等于()ABCD解析是第二象限角,cos 0.又sin2cos21,tan ,cos .答案C4若为第三象限角,则_.解析为第三象限角,sin 0,cos 0,原式。

5、8函数yAsin(x)的图像与性质(二)一、选择题1(2018安徽滁州高二期末)最大值为,最小正周期为,初相为的函数表达式是()Aysin BysinCysin Dysin考点求三角函数的解析式题点三角函数中参数的物理意义答案D解析由最小正周期为,排除A,B;由初相为,排除C.2若函数f(x)3sin(x)对任意x都有ff,则有f等于()A3或0 B3或0C0 D3或3答案D解析由ff知,x是函数的对称轴,解得f3或3,故选D.3如图所示,函数的解析式为()Aysin BysinCycos Dycos答案D解析由图知T4,2.又当x时,y1,经验证,可得D项解析式符合题目要求4.函数f(x)Asin(x)的部分图像如图所示,为。

6、8函数yAsin(x)的图像与性质(一)一、选择题1将函数y2sin的图像向右平移个单位长度后,所得图像对应的函数为()Ay2sin By2sinCy2sin Dy2sin答案D解析将函数y2sin的图像向右平移个单位长度,所得函数为y2sin2sin,故选D.2若把函数ysin的图像向右平移m(m0)个单位长度后,得到ysin x的图像,则m的最小值为()A. B. C. D.答案C解析依题意,ysinsin x,m2k(kZ),m2k(kZ),又m0,m的最小值为.3把函数ysin的图像向右平移个单位长度,所得图像对应的函数是()A非奇非偶函数 B既是奇函数又是偶函数C奇函数 D偶函数答案D解析ysin的图像向右平移个单位长度。

7、9三角函数的简单应用一、选择题1.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过周期后,乙的位置将移至()Ax轴上 B最低点C最高点 D不确定考点三角函数模型的应用题点三角函数在天文、物理学方面的应用答案C2.一单摆如图所示,以OA为始边,OB为终边的角()与时间t(s)满足关系式sin,t0,),则当t0时,角的大小及单摆频率是()A2, B., C., D2,考点三角函数模型的应用题点三角函数在天文、物理学方面的应用答案B解析当t0时,sin,由函数解析式易知单摆周期为,故单摆频率为.3初速度为v0,发射角为,则炮弹上升的高度y与v0之间的。

8、2.3两角和与差的正切函数一、选择题1若tan ,tan(),则tan 等于()A. B. C. D.答案A解析tan tan().2.tan 23tan 97tan 23tan 97的值为()A2 B2 C. D0答案C解析tan(2397)tan 120,tan 23tan 97tan 23tan 97,原式tan 23tan 97(tan 23tan 97).3已知AB45,则(1tan A)(1tan B)的值为()A1 B2 C2 D不确定答案B解析(1tan A)(1tan B)1(tan Atan B)tan Atan B1tan(AB)。

9、6余弦函数的图像与性质一、选择题1函数ycos x|cos x|,x0,2的大致图像为()答案D解析ycos x|cos x|故选D.2在区间上,下列函数是增函数的是()Ay ByCysin x Dycos x答案D解析由正弦、余弦函数的单调性判断可知选D.3函数y2cos x3的值域为()A1,5 B5,1C1,5 D3,1答案A4下列函数中,最小正周期为2的是()Ay|cos x| Bycos|x|Cy|sin x| Dysin|x|答案B5(2019马鞍山模拟)若函数ysin(x)的一个对称中心为,则函数ycos(x)的一条对称轴为()Ax BxCx Dx答案B解析函数ysin(x)的对称中心在ycos(x)的对称轴上,若ysin(x。

10、1.3.2余弦函数、正切函数的图象与性质(二)一、选择题1.函数f(x)2tan(x)是()A.奇函数B.偶函数C.奇函数,也是偶函数D.非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数.2.下列各点中,不是函数ytan图象的对称中心的是()A. B.C. D.答案C解析令2x,kZ,得x(kZ).令k0,得x;令k1,得x;令k2,得x.故选C.3.满足tan A1的三角形的内角A的取值范围是()A. B.C. D.答案D解析因为A为三角形的内角,所以01,结合正切曲线得A.4.已知函数f(x)tan x (0)图象的相邻两支截直线y所得的线段长为,则。

11、1.3.2余弦函数、正切函数的图象与性质(一)一、选择题1.若ysin x是减函数,ycos x是增函数,那么角x在()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C2.函数y2cos x的单调递增区间是()A.2k,2k2 (kZ)B.k,k2 (kZ)C. (kZ)D.2k,2k (kZ)答案D解析令ucos x,则y2u,y2u在u(,)上是增函数,y2cos x的增区间,即ucos x的增区间,即vcos x的减区间2k,2k (kZ).3.下列函数中,周期为,且在上为减函数的是()A.ysin B.ycosC.ysin D.ycos答案A解析因为函数周期为,所以排除C,D.又因为ycossin 2x在上为增函数,故B不符合.故选A.4.要得到ycos的图。

12、5.4.35.4.3 正切函数的性质与图象正切函数的性质与图象 课时对点练课时对点练 1函数 fx2tan2x6的定义域是 A.xR x6 B.xR x12 C.xR xk6,kZ D.xR xk26,kZ 答案 D 解析 由 2x62k,。

13、7向量应用举例一、选择题1在ABC中,已知A(4,1),B(7,5),C(4,7),则BC边的中线AD的长是()A2 B. C3 D.答案B解析BC的中点为D,|.2已知两个力F1,F2的夹角为90,它们的合力大小为10 N,合力与F1的夹角为60,那么F1的大小为()A5 N B5 NC10 N D5 N答案B解析如图,有|F1|F|cos 60105(N)3已知作用在点A的三个力f1(3,4),f2(2,5),f3(3,1),且A(1,1),则合力ff1f2f3的终点坐标为()A(9,1) B(1,9)C(9,0) D(0,9)答案A解析ff1f2f3(3,4)(2,5)(3,1)(8,0),设合力f的终点为P(x,y),则f(1,1)(8,0)(9,1)4已知点P是ABC所在平面内一点,若,其。

14、7正切函数一、选择题1函数ytan,xR且xk,kZ的一个对称中心是()A(0,0) B. C. D(,0)答案C2函数f(x)2tan(x)是()A奇函数B偶函数C奇函数,也是偶函数D非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数3函数ytan x的值域是()A1,1 B(,11,)C(,1 D1,)答案A解析函数ytan x在上为增函数,且tan1,tan 1,故选A.4方程tan在区间0,2)上的解的个数是()A2 B3 C4 D5答案C解析方程tan,2xk,kZ,x,kZ;令k0,k1,k2,k3,求得方程在区间0,2)上的解为0,;共4个5下列关于。

【ampamp1677 正切函数 课时】相关DOC文档
§9 三角函数的简单应用 课时对点练含答案
§7 向量应用举例 课时对点练含答案
§7 正切函数 课时对点练含答案
标签 > ampamp1677 正切函数 课时对点练含答案[编号:110534]