1.3.2三角函数的图象与性质 第1课时正弦函数、余弦函数的图象与性质 一、选择题 1符合以下三个条件: 在上单调递减; 以2为周期; 是奇函数 这样的函数是() Aysin x Bysin x Cycos x Dycos x 考点正弦、余弦函数性质的综合应用 题点正弦、余弦函数性质的综合应用 答案
1.3.2全集与补集 课时对点练含答案Tag内容描述:
1、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。
2、第2课时正切函数的图象与性质一、选择题1函数ytan的定义域是()ARB.C.D.答案B2函数f(x)tan的单调递增区间为()A.,kZB(k,(k1),kZC.,kZD.,kZ答案C3函数f(x)|tan 2x|是()A周期为的奇函数 B周期为的偶函数C周期为的奇函数 D周期为的偶函数考点正切函数周期性与对称性题点正切函数周期性、奇偶性答案D解析f(x)|tan(2x)|tan 2x|f(x),故f(x)为偶函数,T.4与函数ytan的图象不相交的一条直线是()Ax ByCx Dy考点正切函数的图象题点正切函数的图象答案C解析令2xk(kZ),得x(kZ)令k0,得x.5已知f(x)tan,则使f(x)成立的x的集合是()A.,kZB.,kZC.,。
3、1集合的含义与表示第1课时集合的含义一、选择题1.已知集合A由满足x1的数x构成,则有()A.3A B.1A C.0A D.1A考点元素与集合的关系题点判断元素与集合的关系答案C解析很明显3,1不满足不等式,而0,1满足不等式.2.下列关系正确的个数为()Q;0N;|3.14|R;Q.A.1 B.2 C.3 D.4考点元素与集合的关系题点判断元素与集合的关系答案B解析因为是无理数,所以错误;因为0是自然数,不是正整数,所以错误;|3.14|3.14,所以对;是有理数,所以对,故正确的个数是2.3.现有以下说法,其中正确的是()接近于0的数的全体构成一个集合;正方体的全体构成一个集。
4、第2课时集合的表示一、选择题1.下列集合中,是空集的是()A.x|x233B.(x,y)|yx2,x,yRC.x|x20D.x|x2x10考点空集的定义、性质及运算题点空集的定义答案D解析x|x2330;函数yx2的图像上有无数多个点,(x,y)|yx2,x,yR为无限集;x|x200;方程x2x10,判别式140,xA,则B等于()A.1,0 B.1 C.0,1 D.1考点集合的表示题点用另一种方法表示集合答案D3.集合AxZ|2x3的元素个数为()A.1 B.2 C.3 D.4考点用描述法表示集合题点用描述法表示集合答案D解析因为AxZ|2x3,所以x的取值为。
5、 3 全称量词与存在量词全称量词与存在量词 3.1 全称量词与全称命题全称量词与全称命题 3.2 存在量词与特称命题存在量词与特称命题 一、选择题 1.下列说法正确的个数是( ) 命题“所有的四边形都是矩形”是特称命题; 命题“任意 xR,x222 考点 特称命题的真假判断 题点 特称命题的真假判断 答案 B 3.有四个关于三角函数的命题: p1:存在 xR,sin2 x 2cos 2 x 2 1 2; p2:存在 x,yR,sin(xy)sin xsin y; p3:对任意的 x0, 1cos 2x 2 sin x; p4:sin xcos yxy 2. 其中假命题为( ) A.p1,p4 B.p2,p4 C.p1,p3 D.p3,p4 考点 含有一个量。
6、 3 全称量词与存在量词全称量词与存在量词 31 全称量词与全称命题全称量词与全称命题 32 存在量词与特称命题存在量词与特称命题 一、选择题 1下列说法正确的个数是( ) 命题“所有的四边形都是矩形”是特称命题; 命题“任意 xR,x220”是全称命题; 命题“存在 xR,x24x40”是特称命题 A0 B1 C2 D3 考点 量词与命题 题点 特称(全称)命题的识别 答案 C 解析 只有正确 2以下四个命题既是特称命题又是真命题的是( ) A锐角三角形的内角是锐角或钝角 B至少有一个实数 x,使 x20 C两个无理数的和必是无理数 D存在一个负数 x,使1 x2 考点 存在量。
7、1.3.2余弦函数、正切函数的图象与性质(二)一、选择题1.函数f(x)2tan(x)是()A.奇函数B.偶函数C.奇函数,也是偶函数D.非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数.2.下列各点中,不是函数ytan图象的对称中心的是()A. B.C. D.答案C解析令2x,kZ,得x(kZ).令k0,得x;令k1,得x;令k2,得x.故选C.3.满足tan A1的三角形的内角A的取值范围是()A. B.C. D.答案D解析因为A为三角形的内角,所以01,结合正切曲线得A.4.已知函数f(x)tan x (0)图象的相邻两支截直线y所得的线段长为,则。
8、1.3.2余弦函数、正切函数的图象与性质(一)一、选择题1.若ysin x是减函数,ycos x是增函数,那么角x在()A.第一象限 B.第二象限C.第三象限 D.第四象限答案C2.函数y2cos x的单调递增区间是()A.2k,2k2 (kZ)B.k,k2 (kZ)C. (kZ)D.2k,2k (kZ)答案D解析令ucos x,则y2u,y2u在u(,)上是增函数,y2cos x的增区间,即ucos x的增区间,即vcos x的减区间2k,2k (kZ).3.下列函数中,周期为,且在上为减函数的是()A.ysin B.ycosC.ysin D.ycos答案A解析因为函数周期为,所以排除C,D.又因为ycossin 2x在上为增函数,故B不符合.故选A.4.要得到ycos的图。
9、3集合的基本运算3.1交集与并集一、选择题1.设集合A1,2,3,Bx|1x2,xZ,则AB等于()A.1 B.1,2C.0,1,2,3 D.1,0,1,2,3答案C2.已知集合A0,1,2,3,B1,3,4,则AB的子集个数为()A.2 B.3 C.4 D.16答案C解析AB1,3,所以AB的子集个数为4.3.若集合Mx|3x4,N3,1,4,则MN等于()A.3 B.1C.3,1,4 D.3,1考点交集的概念及运算题点有限集合与无限集合的交集运算答案D解析Mx|3x4,N3,1,4,则MN3,1,故选D.4.已知集合M1,2,3,4,N2,2,下列结论成立的是()A.NM B.MNMC.MNN D.MN2考点并集、交集的综合运算题点。
10、1.2子集、全集、补集一、填空题1若,则_,c=_答案32解析依题意知,1,2是方程x2bxc0的两根,由根与系数的关系得,b(x1x2)3,cx1x22.2已知集合A,B,则集合A,B之间的关系为_答案AB解析A,B,故AB.3已知集合U,S,T,F的关系如图所示,则下列关系正确的是_SU;FT;ST;SF;SF;FU.答案解析元素与集合之间的关系才用,故错;子集的区域要被全部涵盖,故错4已知集合A,且集合A中至少含有一个偶数,则这样的集合A的个数为_答案6解析方法一集合的子集为,其中含有偶数的集合有6个方法二共有238(个)子集,其中不含偶数的有,.故符合题意的A共有82。
11、3.2全集与补集一、选择题1.已知全集U0,1,2,3,4,集合A1,2,3,B2,4,则(UA)B为()A.1,2,4 B.2,3,4C.0,2,4 D.0,2,3,4考点交并补集的综合问题题点有限集合的交并补运算答案C解析UA0,4,所以(UA)B0,2,4,故选C.2.已知Ax|x10,B2,1,0,1,则(RA)B等于()A.2,1 B.2C.1,0,1 D.0,1考点交并补集的综合问题题点有限集合的交并补运算答案A解析因为集合Ax|x1,所以RAx|x1,则(RA)Bx|x12,1,0,12,1.3.设全集U1,2,3,4,5,集合A2,4,B1,2,3,则图中阴影部分所表示的集合是()A.4 B.2,4C.4,5 D.1,3,4答案A。