1.3.2 三角函数的图象与性质一同步练习含答案

14.5 三角函数的图象和性质A 组 基础题组1.函数 y=3-2sin2x 的最小正周期为( )A. B. C.2 D.4 2答案 B y=3-2sin 2x=2+cos 2x,最小正周期 T=, 故选 B.2.函数 f(x)=sin xcos x+ cos 2x 的最小正周期和振幅分别是( )3

1.3.2 三角函数的图象与性质一同步练习含答案Tag内容描述:

1、14.5 三角函数的图象和性质A 组 基础题组1.函数 y=3-2sin2x 的最小正周期为( )A. B. C.2 D.4 2答案 B y=3-2sin 2x=2+cos 2x,最小正周期 T=, 故选 B.2.函数 f(x)=sin xcos x+ cos 2x 的最小正周期和振幅分别是( )32A.,1 B.,2 C.2,1 D.2,2答案 A f(x)=sin xcos x+ cos 2x32= sin 2x+ cos 2x=sin ,12 32 (2x+ 3)最小正周期和振幅分别是 ,1.故选 A.3.(2019 台州中学月考)定义在 R 上的函数 f(x)既是偶函数又是周期函数.若 f(x)的最小正周期是 ,且当 x 时,f(x)=sin x,则 f 的值为( )0, 2 (53)A.- B. C.- D.12 12 32 32答案 D f(x)的最小正周期。

2、一轮单元训练金卷高三数学卷(B)第 六 单 元 三 角 函 数 的 图 象 和 性 质注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 。

3、一轮单元训练金卷高三数学卷(B)第 六 单 元 三 角 函 数 的 图 象 和 性 质注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 区 。

4、一轮单元训练金卷 高三 数学卷(A )第 六 单 元 三 角 函 数 的 图 象 与 性 质注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 。

5、一轮单元训练金卷 高三 数学卷(A )第 六 单 元 三 角 函 数 的 图 象 与 性 质注 意 事 项 :1 答 题 前 , 先 将 自 己 的 姓 名 、 准 考 证 号 填 写 在 试 题 卷 和 答 题 卡 上 , 并 将 准 考 证 号 条 形 码 粘贴 在 答 题 卡 上 的 指 定 位 置 。2 选 择 题 的 作 答 : 每 小 题 选 出 答 案 后 , 用 2B 铅 笔 把 答 题 卡 上 对 应 题 目 的 答 案 标 号 涂 黑 ,写 在 试 题 卷 、 草 稿 纸 和 答 题 卡 上 的 非 答 题 区 域 均 无 效 。3 非 选 择 题 的 作 答 : 用 签 字 笔 直 接 答 在 答 题 卡 上 对 应 的 答 题 。

6、课时规范练(授课提示:对应学生用书第 249 页)A 组 基础对点练1(2016高考全国卷 )函数 f(x)cos 2x6cos 的最大值为( B )(2 x)A4 B5C6 D72(2016高考浙江卷 )函数 ysin x 2 的图象是( D )3(2018蚌埠二模 )如图,已知函数 f(x)sin(x) 的图象与坐( 0,| 2)标轴交于 A(a,0),B ,C(0,c ),若| OA|2|OB|,则 c( D )(12,0)A B12 22C D33 32解析:由题意|OA|2|OB| ,B ,(12,0)|AB| ,即周期 T3,可得 ,函数 f(x)sin ,32 23 (23x )把 C(0,c)代入,可得 sin c0.把 B 代入,可得 sin 0. | ,(12,0) (3 ) 2 .则 csin .故选 D.3 ( 3) 324(2017西。

7、第 27 讲 三角函数的图象与性质( 二)1(经典真题)在函数y cos |2x |,y|cos x| ,ycos(2x ),ytan(2x )中,6 4最小正周期为 的所有函数为 (A)A BC Dycos|2x |cos 2x,最小正周期为 ;由图象知 y|cos x |的最小正周期为 ;ycos(2x )的最小正周期 T ;6 22ytan(2x )的最小正周期 T .4 2因此最小正周期为 的函数为.2(2018天津卷)将函数 y sin(2x )的图象向右平移 个单位长度,所得图象对应5 10的函数(A)A在区间 , 上单调递增34 54B在区间 , 上单调递减34C在区间 , 上单调递增54 32D在区间 ,2上单调递减32函数 y sin(2x )的图象向右平移 个。

8、第 26 讲 三角函数的图象与性质( 一)1若动直线 xa 与函数 f(x)sin x 和 g(x)cos x 的图象分别交于 M、N 两点,则|MN|的最大值为(B)A1 B. 2C. D23|MN|sin acos a| |sin(a )| .24 22(经典真题)如图,某港口一天 6 时到 18 时的水深变化曲线近似满足函数y3sin( x)k .据此函数可知,这段时间水深(单位:m) 的最大值为(C)6A5 B6C8 D10根据图象得函数的最小值为 2,有3k2,得 k5,所以最大值为 3k8.3(2019福建一模)已知 f(x)2cos 2x6sin xcos x,则函数 f(x)的最大值是(C)A3 B. 10C. 1 D. 110 10f(x)1cos 2x3sin 2x ( cos 2x sin 2x)1101010 310。

9、分层训练进阶冲关A组 基础练(建议用时 20分钟)1.函数 y=sin 的最小正周期为 ( C )A. B.2 C.4 D.2.函数 y=-cos x(x0)的图象中距离 y轴最近的最高点的坐标为 ( B )A. B.(,1) C.(0,1) D.(2,1)3.函数 f(x)= 的定义域为 ( A )A.B.C.D.4.已知 aR,函数 f(x)=sin x-|a|,xR 为奇函数,则 a等于 ( A )A.0 B.1 C.-1 D.15.下列函数中,同时满足:在 上是增函数,为奇函数,以 为最小正周期的函数是 ( A )A.y=tan x B.y=cos x C.y=tan D.y=|sin x|6.下列关系式中正确的是 ( C )A.sin 110)的图象与直线 y+2=0的两个相邻公共点之间的距离为 ,则 的值为 3 . 11.。

10、 4.3 三角函数的图象与性质三角函数的图象与性质 最新考纲 考情考向分析 1.能画出 ysin x,ycos x,ytan x 的图象, 了解三角函数的周期性 2.理解正弦函数、 余弦函数在0,2上的性质 (如单调性、最大值和最小值,图象与 x 轴的 交点等),理解正切函数在区间 2, 2 内的 单调性. 以考查三角函数的图象和性质为主,题目涉 及三角函数的图象及应用、图象的对称性、 单调性、周期性、最值、零点考查三角函 数性质时,常与三角恒等变换结合,加强数 形结合思想、 函数与方程思想的应用意识 题 型既有选择题和填空题,又有解答题,中档 难度. 1用。

11、1.3.2余弦函数、正切函数的图象与性质(一)基础过关1若ysinx是减函数,ycosx是增函数,那么角x在()A第一象限 B第二象限C第三象限 D第四象限答案C2函数y2cosx的单调递增区间是()A2k,2k2 (kZ)Bk,k2 (kZ)C. (kZ)D2k,2k (kZ)答案D解析令ucosx,则y2u,y2u在u(,)上是增函数,y2cosx的增区间,即ucosx的增区间,即ucosx的减区间2k,2k (kZ)3下列函数中,周期为,且在上为减函数的是()Aysin BycosCysin Dycos答案A解析因为函数周期为,所以排除C、D.又因为ycossin2x在上为增函数,故B不符合故选A.4.设函数f(x)cos,则下列结论错误的是()Af(x)。

12、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。

13、第2课时正切函数的图象与性质一、选择题1函数ytan的定义域是()ARB.C.D.答案B2函数f(x)tan的单调递增区间为()A.,kZB(k,(k1),kZC.,kZD.,kZ答案C3函数f(x)|tan 2x|是()A周期为的奇函数 B周期为的偶函数C周期为的奇函数 D周期为的偶函数考点正切函数周期性与对称性题点正切函数周期性、奇偶性答案D解析f(x)|tan(2x)|tan 2x|f(x),故f(x)为偶函数,T.4与函数ytan的图象不相交的一条直线是()Ax ByCx Dy考点正切函数的图象题点正切函数的图象答案C解析令2xk(kZ),得x(kZ)令k0,得x.5已知f(x)tan,则使f(x)成立的x的集合是()A.,kZB.,kZC.,。

14、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.4.掌握正弦曲线、余弦曲线的性质知识点一正弦函数图象1正弦函数的图象叫做正弦曲线如图:2正弦曲线的作法(1)几何法借助三角函数线(2)描点法五点法用“五点法”画正弦曲线在0,2上的图象时所取的五个关键点为(0,0),(,0),(2,0)知识点二余弦函数图象1余弦函数的图象叫做余弦曲线如图。

15、第2课时正切函数的图象与性质学习目标1.会求正切函数ytan(x)的周期.2.掌握正切函数ytan x的奇偶性,并会判断简单三角函数的奇偶性.3.掌握正切函数的单调性,并掌握其图象的画法知识点一正切函数的图象1正切函数的图象叫正切曲线,图象如下:2正切函数的图象特征正切曲线是被相互平行的直线xk,kZ所隔开的无穷多支曲线组成的知识点二正切函数的性质函数ytan x的图象与性质见下表:解析式ytan x图象定义域值域R周期奇偶性奇单调性在开区间(kZ)上都是单调增函数1函数ytan x在其定义域上是增函数()提示ytan x在开区间(kZ)上是增函数,但在其定。

16、1.3.2三角函数的图象与性质(二) 基础过关1.设函数f(x)cos,则下列结论错误的是()A.f(x)的一个周期为2B.yf(x)的图象关于直线x对称C.f(x)的一个零点为xD.f(x)在单调递减解析函数f(x)cos的图象可由ycos x的图象向左平移个单位得到,如图可知,f(x)在上先递减后递增,D错误.答案D2.设M和m分别表示函数ycos x1的最大值和最小值,则Mm等于()A.2 B. C. D.2解析因为函数g(x)cos x的最大值和最小值分别为1和1,所以函数ycos x1的最大值和最小值分别为和.因此Mm2.答案A3.函数y2sin为偶函数,则绝对值最小的值为_.解析函数为偶函数,则k,kZ,k,kZ,。

17、1.3.2三角函数的图象与性质(三) 基础过关1.下列函数中,既是以为周期的奇函数,又是(0,)上的增函数的是()A.ytan x B.ycos xC.ytan D.y|sin x|解析由于ytan x与ytan 是奇函数,但是只有ytan x的周期为,ycos x与y|sin x|是偶函数.答案A2.下列不等式中正确的是()A.tantan B.tan 1tan 2C.0.而0,tan 2tan 2,B正确;对于C,tan 40,而tan 30,C错;对于D,tan 281tan(180101)tan 101。

18、1.3.2三角函数的图象与性质(一) 基础过关1.在同一平面直角坐标系内,关于函数ysin x,x0,2与ysin x,x2,4的图象描述正确的是()A.重合B.形状相同,位置不同C.关于y轴对称D.形状不同,位置不同解析根据正弦曲线的作法可知函数ysin x,x0,2与ysin x,x2,4的图象只是位置不同,形状相同.只有B正确.答案B2.函数ysin x,x的简图是()解析函数ysin x与ysin x的图象关于x轴对称,故选D.答案D3.方程sin x的根的个数是_.解析在同一坐标系内画出y和ysin x的图象如图所示:根据图象可知方程有7个根.答案74.函数y的定义域是_.解析由2cos x10,得cos 。

【1.3.2 三角函数的图象与性】相关DOC文档
标签 > 1.3.2 三角函数的图象与性质一同步练习含答案[编号:119625]