9.5三角形中位线ppt课件

,苏科数学,7.4 认识三角形(1),美丽的校园 丰富的图形世界,问题情境,问题情境,问题情境,活动1 (1)在这些图案、实物中,有同学们熟悉的图形吗? (2)说一说:什么样的图形叫三角形? (3)三角形的现象在生活中常常见到,试举例并与同学交流,问题情境,如图是某位同学画出的“三角形”,你认为正确

9.5三角形中位线ppt课件Tag内容描述:

1、,苏科数学,7.4 认识三角形(1),美丽的校园 丰富的图形世界,问题情境,问题情境,问题情境,活动1 (1)在这些图案、实物中,有同学们熟悉的图形吗? (2)说一说:什么样的图形叫三角形? (3)三角形的现象在生活中常常见到,试举例并与同学交流,问题情境,如图是某位同学画出的“三角形”,你认为正确的是( ),辩一辩,数学活动,1.三角形的定义: 三角形是由3条不在同一直线上的线段,首尾依次相接组成的图形.,认识三角形,2.三角形的有关概念:,自学课本P20第3节后,你能向大家介绍一下三角形的概念及其基本元素吗?,数学活动,“三角形”用符号“”表示。

2、第6单元 多边形的面积,2 三角形的面积,1,学习目标,2.能正确运用三角形面积计算公式进行计算。,1. 理解三角形面积计算公式的推导过程。,3.通过操作、观察、比较,培养学生问题意识、概括能力和推理能力,发展学生的空间观念。,2,怎样算出红领巾的面积呢?,能不能把三角形也转化成学过的,我们试一试。,情景导入,3,长方形,平行四边形,两个三角形拼凑成一个,两个三角形拼凑成一个,探索新知,4,平行四边形的面积 底 高,2个三角形的面积 底 高,三角形的面积底高2,探索新知,S,a,h,=,2,5,红领巾的底是100cm,高33cm,它的面积是多少平方厘米?,Sah2。

3、,三角形的分类,情境导入,探究新知,课堂小结,课后作业,三角形,课堂练习,5,1,说一说,这些三角形有什么共同的特点?,情境导入,返回,说一说,这些三角形有什么共同的特点?,探究新知,返回,根据角的特点把下面的三角形分成三类。,1个直角 2个锐角:,1个钝角 2个锐角:,3个锐角:,返回,1个直角 2个锐角:,1个钝角 2个锐角:,3个锐角:,直角三角形,钝角三角形,锐角三角形,按角进行分类。,返回,把所有三角形作为一个整 体,上面每种三角形作为这个 整体的一部分,可以用右图来 表示它们之间的关系。,锐角三角形,直角 三角形,钝角 三角形,三角形,。

4、7.3 三角形的内角和,1,学习目标,1.组织学生通过量、剪、拼等实践活动,发现、验证三角形的内角和是180,并能运用这一知识解决生活中简单的实际问题。 2.让学生经历探究三角形的内角和的过程,培养学生的创新意识、探究精神和实践能力,渗透“转化”的数学思想。 3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。,2,情境导入,猜谜语,形状像座山, 稳定性能坚, 三竿首尾连, 奥秘大无边。,3,汇报已知:,你知道哪些有关三角形的知识呢?和大家说说:,4,探究新知,5,算一算,三角形的内角和是多少度呢?,三角尺,6,7,量一量,请同学们剪下书。

5、 1、确定一个圆的位置与大小的条件是什么?、确定一个圆的位置与大小的条件是什么? 圆心与半径圆心与半径 2、叙述角平分线的性质与判定、叙述角平分线的性质与判定 性质:角平分线上的点到这个角的两边的距离相等性质:角平分线上的点到这个角的两边的距离相等. 判定:到这个角的两边距离相等的点在这个角的平分线上判定:到这个角的两边距离相等的点在这个角的平分线上. 3、下图中、下图中ABC与圆与圆O的关系?的。

6、,苏科数学,7.4 认识三角形(2),将橡皮筋的一端固定在ABC的顶点A上,另一端从点B出发沿BC方向移动,在这个过程中,橡皮筋(线段)的位置不断变化,你认为其中有哪些位置是特殊的?请与同学交流,问题情境,如右图所示,取ABC边BC的中点D,连结AD,线段AD就是ABC的一条中线;也称AD为边BC上的中线,在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线,ABD与ACD的面积之间有什么关系?,1.三角形的中线,数学活动,(2)观察这3条中线有什么特点?与同伴进行交流.,(1)在纸上画任意一个三角形,并画出它每条边上的中线,数学活动,三角。

7、18.1.2 平行四边形判定,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第3课时 三角形的中位线,1.理解三角形中位线的概念,掌握三角形的中位线 定理.(重点) 2.能利用三角形的中位线定理解决有关证明和计算问题.(重点),问题 平行四边形的性质和判定有哪些?,导入新课,复习引入,边:,角:,对角线:,ABCD, ADBC,AB=CD, AD=BC,ABCD, AD=BC,BAD=BCD,ABC=ADC,AO=CO,DO=BO,判定,性质,我们探索平行四边形时,常常转化为三角形,利用三角形的全等性质进行研究,今天我们一起来利用平行四边形来探索三角形的某些问题吧.,思考 如图,。

8、22.3 三角形的中位线,第二十二章 四边形,导入新课,讲授新课,当堂练习,课堂小结,1.理解中位线的概念和性质;(重点) 2.能够利用中位线解决相关问题. (重点、难点),学习目标,如图,有一块三角形的蛋糕,准备平均分给两个小朋友,要求两人所分的大小相同,请设计合理的解决方案;若平均分给四个小朋友,要求他们所分的大小都相同,请设计合理的解决方案;,导入新课,情境引入,讲授新课,问题1:你能将任意一个三角形分成四个全等的三角形吗?,合作探究,问题2:连接每两边的中点,看看得到了什么样的图形?,四个全等的三角形,连接三角形两边中点的。

9、,认识三角形,情境导入,探究新知,课堂小结,课后作业,三角形,课堂练习,5,1,情境导入,返回,探究新知,返回,返回,由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。,返回,你画的三角形有几条边?几个角?几个顶点?在图上标出来。,边,边,边,角,角,角,顶点,顶点,顶点,三角形有3条边,3个角,3个顶点。,返回,如果用字母A、B、C分别表示三角形的三个顶点。这个三角形可以表示成三角形ABC。,C,B,三角形ABC,A,返回,哪个是正确的?,返回,从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角。

10、,认识三角形,情境导入,探究新知,课堂小结,课后作业,三角形、平行四边形和梯形,课堂练习,7,1,画一个三角形,并说说三角形有什么特点?,你能在图中找出三角形吗?生活中还有哪些地方能见到三角形?,情境导入,返回,这3条线段要首尾相接地围起来。,三角形有3条边,3个角。,三角形的 3条边都是线段。,三条线段首尾相接围成的图形叫作三角形。,三角形有几个顶点?分别指出三角形的3个顶点、3 条边和 3个角。,探究新知,返回,右边的方格纸上有4个点。 从这4个点中任选3个作为顶点, 都能画一个三角形吗?你有什么发现?,三个点在同一直线上时无法画。

11、,苏科数学,1.2 全等三角形,问题情境,1观察:生活中能够完全重合的两个图形很多, 观察2个完全相同的信封你能找出其中的全等图形吗?,2思考:如图,将ABC沿直线BC平移得DEF; 将ABC沿BC翻折得到DBC; 将ABC旋转180得到AED,寻找上图中两三角形的对应元素, 它们的对应边有什么关系?对应角有什么关系?,数学概念,1全等三角形的概念: 能够完全重合的2个三角形是全等三角形,2 全等三角形的性质: 全等三角形的对应边,对应角相等.,用符号语言可以表述为: ABCDEF, AD,BE,CF, ABDE,BCEF,ACDF,例题讲解,1若ABCDEF, 写出这两个三角形的相。

12、2019 中考数学专题练习 三角形的中位线一、选择题1. (2018广东)在 中, 分别为边 的中点,则 与 的面积ABC,DE,ABCADEBC之比为( )A. B. C. D. 121314162. (2018宁波)如图,在 中,对角线 与 相交于点 , 是边 的中点,YO连接 .若 , ,则 的度数为( )OE60ABC80AA. 50 B. 40 C. 30 D. 203.(2018泸州如图, 的对角线 相交于点 , 是 的中点,且ABCDY,BOEAB,则 的周长为( )4AEOA. 20 B. 16 C. 12 D. 84. (2018贵阳)如图,在菱形 中, 是 的中点, ,交 于点 .如EAC/FF果 ,那么菱形 的周长。

13、第2章 四边形,2.4 三角形的中位线,2.4 三角形的中位线,目标突破,总结反思,第2章 四边形,知识目标,2.4 三角形的中位线,知识目标,通过作图,结合数形结合思想,能正确理解三角形中位线的概念及三角形中位线定理,并能利用三角形中位线定理进行计算与证明,目标突破,目标 能利用三角形中位线定理进行计算与证明,图241,2.4 三角形的中位线,2.4 三角形的中位线,2.4 三角形的中位线,【归纳总结】 三角形中位线与三角形中线的异同,2.4 三角形的中位线,例2 教材补充例题 如图242,D是ABC内一点,BDCD,AD12,BD8,CD6,E,F,G,H分别是边AB,AC,C。

14、,等腰三角形和等边三角形,情境导入,探究新知,课堂小结,课后作业,三角形、平行四边形和梯形,课堂练习,7,1,量一量下面三角形每条边的长度,看看这些三角形有什么共同的特点。,两条边相等的三角形是等腰三角形。,上面等腰三角形的顶角和底角分别在哪里?指一指。,情境导入,返回,等腰三角形的底角相等。,等腰三角形底边上的高在它的对称轴上。,等腰三角形是轴对称图形。,探究新知,等腰三角形还有哪些特征?,返回,量一量,下面三角形3条边的长度都相等吗?,3条边都相等的三角形是等边三角形,也叫作正三角形。,你会像下面这样剪出一个等边三角形。

15、4.5 三角形的中位线,C,B,B、C两点被池塘隔开如何测量B、C两点距离?,想一想,A,B,C,D,E,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB,AC的中点D、E,若测出DE的长,就能求出池塘BC的长,你知道为什么吗?,想一想,A,B,C,D,E,合作学习,剪一刀,将一张三角形纸片剪成 一张三角形纸片和一张梯形纸片.,(1)要保证剪成一张三角形纸片和一张梯形纸片,剪痕的位置有什么要求?,(2)若要使ADE与梯形DBCE能拼成平行四边形,剪痕的位置有什么要求?,(3)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的。

16、4.5三角形的中位线,A,B,C,D,E,两个点B、C被池塘隔开,只要在平地上选一点A,再分别找出线段AB,AC的中点D、E,并测出DE的长,就能求出BC的长,你知道为什么吗?,生活中的数学,合作学习,剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片.,(1) 如果要求剪得的两个图形拼成一个平行四边形,剪痕的位置有什么要求?,A,B,C,D,E,概念学习,F,三角形有三条中位线,连结三角形两边中点的线段叫做 三角形的中位线.,合作学习,剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片.,(1) 如果要求剪得的两个图形拼成一个平行四边形,剪痕的位置有什么。

17、9.5三角形的中位线练习一、选择题12018泸县模拟 如图 K211,在 ABC中, D, E分别是边 AB, AC的中点,若BC6,则 DE的长为( )A2 B3C4 D6图 K211图 K21222017张家界 如图 K212, D, E分别是 ABC的边 AB, AC的中点如果ADE的周长是 6,则 ABC的周长是( )A6 B12 C18 D243如图 K213, ABC中, D, E分别是 BC, AC的中点, BF平分 ABC,交 DE于点F,若 BC6,则 DF的长是( )A3 B4 C5 D6图 K213图 K2144如图 K214,杨伯伯家小院子里的四棵小树 E, F, G, H刚好在其四边形院子ABCD各边的中点处若在四边形 EFGH内种上小草,则这块草地的形状是(。

18、9.5 三角形的中位线,连接三角形两边中点的线段叫做三角形的中位线.,三角形有几条中位线?,数学化认识,定义:,在ABC中, D、E分别为AB、AC的中点, DEBC,DEBC,三角形中位线定理:,三角形的中位线平行于第三边,并且等于第三边的一半,符号语言:,(1) 如图(a),已知D、E分别为AB和AC 的中点,DE5,求BC的长;,基础练习,(2) 如图(b),已知D、E、F分别为AB、AC、BC的中点,AC8,C70,求DF的长和EDF的度数;,(3) 如图(c),已知D、E、F分别为AB、AC、BC的中点,若DEF的周长为10cm,求ABC的周长;试想一下如果连接AF,那么AF与DE有什么关系。

19、9.5 三角形的中位线,情景创设,怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?,1. 剪一个三角形,记为ABC2分别取AB、AC的中点D、E,并连接DE3沿DE将ABC剪成两部分,并将ADE绕点E旋转180得四边形DBCF,1.操作:,四边形DBCF是什么特殊的四边形?为什么?,2.思考:,答:四边形DBCF是平行四边形。,由操作可知:ADE与CFE关于点E成中心对称,则CF=AD,F=ADE,由F=ADE可得:ABCF,又由CF=AD,AD=DB可得:DB=CF,所以四边形BCFD是平行四边形 理由:一组对边平行且相等的四边形是平行四边形,3.三角形中位线的概念,连接三角形两边。

20、,苏科数学,9.6 三角形的中位线,南京市第二十九中学初中部 姜滢,苏科数学,问题情境,问题1怎样将一张三角形的硬纸片剪成两部分,使分成的两部分能拼成一个平行四边形?,苏科数学,观察探索,活动一:1剪一张三角形纸片,记为ABC;分别取AB、AC的中点D、E,连接DE;沿DE将ABC剪成两部分,并将ADE绕点E按顺时针方向旋转180度到CFE的位置,得四边形BCFD;,苏科数学,观察探索,2判别四边形BCFD是否是平行四边形?并说明理由,苏科数学,观察探索,活动二:探索三角形中位线的性质:三角形的中位线平行于第三边,并且等于第三边的一半,已知:在ABC中,。

【9.5三角形中位线ppt课件】相关PPT文档
7.4认识三角形(1)ppt课件
6.2 三角形的面积ppt课件
5.4 三角形的分类ppt课件
三角形的内角和ppt课件
2.3三角形内切圆ppt课件
7.4认识三角形(2)ppt课件
5.1 认识三角形ppt课件
7.1 认识三角形ppt课件
1.2全等三角形ppt课件
7.6 等腰三角形和等边三角形ppt课件
9.5三角形中位线ppt课件
【9.5三角形中位线ppt课件】相关DOC文档
标签 > 9.5三角形中位线ppt课件[编号:114429]