第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2,分层训练进阶冲关A组 基础练(建议用时 20分钟)1.函数
5.4.1正弦函数余弦函数的图象 分层训练含答案Tag内容描述:
1、第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2。
2、分层训练进阶冲关A组 基础练(建议用时 20分钟)1.函数 y=sin 的最小正周期为 ( C )A. B.2 C.4 D.2.函数 y=-cos x(x0)的图象中距离 y轴最近的最高点的坐标为 ( B )A. B.(,1) C.(0,1) D.(2,1)3.函数 f(x)= 的定义域为 ( A )A.B.C.D.4.已知 aR,函数 f(x)=sin x-|a|,xR 为奇函数,则 a等于 ( A )A.0 B.1 C.-1 D.15.下列函数中,同时满足:在 上是增函数,为奇函数,以 为最小正周期的函数是 ( A )A.y=tan x B.y=cos x C.y=tan D.y=|sin x|6.下列关系式中正确的是 ( C )A.sin 110)的图象与直线 y+2=0的两个相邻公共点之间的距离为 ,则 的值为 3 . 11.。
3、5 5. .6 6 函数函数 y yA Asinsinxx 第一课时第一课时 函数函数 y yA Asinsinxx 的图象的图象 一选择题 1为了得到函数 ysinx1的图象,只需把函数 ysin x 的图象上所有的点 A向左平移 1 个。
4、分层训练进阶冲关A组 基础练(建议用时 20分钟)1.为了得到函数 y=sin(x+1)的图象,只需把函数 y=sin x的图象上所有的点 ( A )A.向左平行移动 1个单位长度B.向右平行移动 1个单位长度C.向左平行移动 个单位长度D.向右平行移动 个单位长度2.已知 0,函数 f(x)=cos 的一条对称轴为 x= ,一个对称中心为 ,则 有 ( A )A.最小值 2 B.最大值 2C.最小值 1 D.最大值 13.函数 y=sin 在区间 上的简图是 ( A )4.若函数 f(x)=sin 的图象向右平移 个单位后与原图象关于 x轴对称,则 的最小正值是 ( D )A. B.1 C.2 D.35.已知 f(x)=2sin 的图象经过点(0,1),则该。
5、第 10 课时 正弦函数、余弦函数的图象课时目标1.了解正、余弦函数图象的几何作法2掌握“五点法”作正、余弦函数草图识记强化1 “五点法”作正弦函数图象的五个点是(0,0)、 、(,0) 、 、(2,0) “五(2,1) (32, 1)点法”作余弦函数图象的五个点是(0,1)、 、(,1) 、 、(2,1) (2,0) (32,0)2作正、余弦函数图象的方法有两种:一是五点法作图象二是利用正弦线、余弦线来画的几何法3作正弦函数图象可分两步:一是画出0,2的图象二是把这一图象向左、右连续平行移动( 每次 2 个单位长度 )课时作业一、选择题1函数 ycosx(xR)的图象向左平移 。
6、5 5. .4.34.3 正切函数的性质与图象正切函数的性质与图象 一选择题 1.函数 ytan x1tan x是 A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数 答案 A 解析 函数的定义域是xx12k,k。
7、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。
8、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.4.掌握正弦曲线、余弦曲线的性质知识点一正弦函数图象1正弦函数的图象叫做正弦曲线如图:2正弦曲线的作法(1)几何法借助三角函数线(2)描点法五点法用“五点法”画正弦曲线在0,2上的图象时所取的五个关键点为(0,0),(,0),(2,0)知识点二余弦函数图象1余弦函数的图象叫做余弦曲线如图。
9、第五章 三角函数 5.45.4 三角函数的图象与性质三角函数的图象与性质 5.4.15.4.1 正弦函数余弦函数的图象正弦函数余弦函数的图象 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 心 素 养 1.了解由单位圆和正余弦函。
10、33三角函数的图象与性质33.1正弦函数、余弦函数的图象与性质(一)基础过关1函数ysinx (xR)图象的一条对称轴是()Ax轴By轴C直线yxD直线x答案D2函数ycosx(xR)的图象向右平移个单位后,得到函数yg(x)的图象,则g(x)的解析式为()Ag(x)sinxBg(x)sinxCg(x)cosxDg(x)cosx答案B3函数ysinx,x的简图是()答案D4方程sinx的根的个数是()A7B8C9D10答案A解析在同一坐标系内画出y和ysinx的图象如图所示:根据图象可知方程有7个根5如图所示,函数ycosx|tanx|(0x且x)的图象是()答案C解析当0x时,ycosx|tanx|sinx;当x时,ycosx|tanx|sinx;当x时,y。
11、3.3.1正弦函数、余弦函数的图象与性质(二)基础过关1若ysinx是减函数,ycosx是增函数,那么角x在()A第一象限B第二象限C第三象限D第四象限答案C2若,都是第一象限的角,且sinBsinsinCsinsinDsin与sin的大小不定答案D3函数y2sin2x2cosx3的最大值是()A1B1CD5答案C解析由题意,得y2sin2x2cosx32(1cos2x)2cosx322.1cosx1,当cosx时,函数有最大值.4对于下列四个命题:sinsin;coscos;sin138sin143;tan40sin40.其中正确命题的序号是()ABCD答案B5关于x的函数f(x)sin(x)有。
12、33三角函数的图象与性质33.1正弦函数、余弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系知识链接1在如图所示的单位圆中,角的正弦线、余弦线分别是什么?答sinMP;cosOM2设实数x对应的角的正弦值为y,则对应关系ysinx就是一个函数,称为正弦函数;同样ycosx也是一个函数,称为余弦函数,这两个函数的定义域是什么?答正弦函数和余弦函数的定义域都是R.3作函数图象最基本的方。
13、3.3.1正弦函数、余弦函数的图象与性质(二)学习目标1.掌握ysinx与ycosx的定义域,值域,最值、单调性、奇偶性等性质,并能解决相关问题.2.掌握ysinx,ycosx的单调性,并能利用单调性比较大小.3.会求函数yAsin(x)及yAcos(x)的单调区间知识链接1观察正弦曲线和余弦曲线的对称性,你有什么发现?答正弦函数ysinx的图象关于原点对称,余弦函数ycosx的图象关于y轴对称2上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证?答正弦函数是R上的奇函数,余弦函数是R上的偶函数根据诱导公式得,sin(x)sinx,cos(x)cosx均对一切xR。
14、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。
15、 1.4 三角函数的图象与性质三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象正弦函数、余弦函数的图象 1用“五点法”作函数 y2sin x1 的图象时,首先应描出的五点的横坐标可以是 ( ) A0, 2, 3 2 ,2 B0, 4, 2, 3 4 , C0,2,3,4 D0, 6, 3, 2, 2 3 解析 由“五点法”可知选 A 答案 A 2方程 sin x x 10的根的个数。
16、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 学习目标 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线 和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余 弦曲线之间的联系 知识点一 正弦函数、余弦函数的概念 实数集与角的集合之间可以建立一一对应关系, 而一个确定的角又。
17、5 5. .4 4 三角函数的图象与性质三角函数的图象与性质 5 5. .4.14.1 正弦函数余弦函数的图象正弦函数余弦函数的图象 基础达标基础达标 一选择题 1.对于余弦函数 ycos x 的图象,有以下描述: 向左向右无限延伸; 与 。
18、5.45.4 三角函数的图象与性质三角函数的图象与性质 5 5. .4.14.1 正弦函数正弦函数余弦函数的图象余弦函数的图象 课时对点练课时对点练 1在同一平面直角坐标系内,函数 ysin x,x0,2与 ysin x,x2,4的图象 A。
19、5 5. .4 4 三角函数的图象与性质三角函数的图象与性质 5 5. .4.14.1 正弦函数余弦函数的图象正弦函数余弦函数的图象 一选择题 1.用五点法作函数 ycos 2x,xR 的图象时,首先应描出的五个点的横坐标是 A.0,2,3。