3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)

上传人:可** 文档编号:115131 上传时间:2020-01-04 格式:DOCX 页数:7 大小:285.13KB
下载 相关 举报
3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)_第1页
第1页 / 共7页
3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)_第2页
第2页 / 共7页
3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)_第3页
第3页 / 共7页
3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)_第4页
第4页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、33三角函数的图象与性质33.1正弦函数、余弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系知识链接1在如图所示的单位圆中,角的正弦线、余弦线分别是什么?答sinMP;cosOM2设实数x对应的角的正弦值为y,则对应关系ysinx就是一个函数,称为正弦函数;同样ycosx也是一个函数,称为余弦函数,这两个函数的定义域是什么?答正弦函数和余弦函数的定义域都是R.3作函数图象最基本的方法是什么?其步骤是什么?答作函数图象最基本的方法是描点法,

2、其步骤是列表、描点、连线预习导引1正弦曲线、余弦曲线正弦函数ysinx(xR)和余弦函数ycosx(xR)的图象分别叫正弦曲线和余弦曲线2“五点法”画图画正弦函数ysinx,x0,2的图象,五个关键点是(0,0),(,0),(2,0);画余弦函数ycosx,x0,2的图象,五个关键点是(0,1),(,1),(2,1)3正、余弦曲线的联系依据诱导公式cosxsin,要得到ycosx的图象,只需把ysinx的图象向左平移个单位长度即可.题型一“五点法”作正、余弦函数的图象例1用“五点法”作出下列函数的简图(1)ysinx1,x0,2;(2)y2cosx,x0,2解(1)列表:x02sinx0101

3、0sinx110121描点连线,如图(2)列表:x02cosx101012cosx32123描点连线,如图规律方法作正弦、余弦曲线要理解几何法作图,掌握五点法作图“五点”即ysin x或ycos x的图象在一个最小正周期内的最高点、最低点和与x轴的交点“五点法”是作简图的常用方法跟踪演练1(1)作出函数ysinx(0x2)的简图;(2)作出函数y的图象解(1)列表:x02sinx01010sinx01010描点并用光滑的曲线连接起来,如图(2)将y化为y|sinx|,即y其图象如图题型二正弦、余弦函数图象的应用例2(1)方程x2cosx0的实数解的个数是_(2)方程sinxlgx的解的个数是_

4、答案(1)2(2)3解析(1)作函数ycosx与yx2的简图,如图所示,可知原方程有两个实数解(2)用五点法画出函数ysinx的简图描出点,(1,0),(10,1)并用光滑曲线连接得到ylgx的图象,如图所示由图象可知方程sinxlgx的解有3个规律方法利用三角函数图象能解决求方程解的个数问题,也可利用方程解的个数(或两函数图象的交点个数)求字母参数的范围问题跟踪演练2函数f(x)sinx2|sinx|,x0,2的图象与直线yk有且仅有两个不同的交点,求k的取值范围解f(x)sinx2|sinx|图象如图,若使f(x)的图象与直线yk有且仅有两个不同的交点,根据右图可得k的取值范围是(1,3)

5、题型三利用三角函数图象求函数的定义域例3求函数y的定义域解为使函数有意义,需满足即正弦函数图象或单位圆如图所示,定义域为规律方法求三角函数定义域时,常常归结为解三角不等式组,这时可利用三角函数的图象或单位圆中三角函数线直观地求得解集跟踪演练3求函数ylg的定义域解由cosx0,得cosx.在0,2内,cosx的解为x或x.作出函数ycosx,x0,2及y的图象:由图知在0,2内cosx的解为0x或x2,所以所求函数的定义域为(kZ),即 (kZ).课堂达标1方程2xsinx的解的个数为()A1 B2C3D无穷多答案D2对于余弦函数ycosx的图象,有以下三项描述:向左向右无限伸展;与x轴有无数

6、多个交点;与ysinx的图象形状一样,只是位置不同其中正确的有()A0个B1个C2个D3个答案D解析如图所示为ycosx的图象可知三项描述均正确3函数ysinx,x0,2的图象与直线y的交点有_个答案2解析如图所示4(1)已知f(x)的定义域为0,1),求f(cosx)的定义域;(2)求函数ylgsin(cosx)的定义域解(1)0cosx02kcosx2k(kZ)又1cosx1,0cosx1.故所求函数定义域为x(2k,2k),kZ.课堂小结1.正弦、余弦曲线在研究正弦、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础2五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 湘教版 > 必修2