ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:285.13KB ,
资源ID:115131      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-115131.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

3.3.1 正弦函数、余弦函数的图象与性质(一) 学案(含答案)

1、33三角函数的图象与性质33.1正弦函数、余弦函数的图象与性质(一)学习目标1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系知识链接1在如图所示的单位圆中,角的正弦线、余弦线分别是什么?答sinMP;cosOM2设实数x对应的角的正弦值为y,则对应关系ysinx就是一个函数,称为正弦函数;同样ycosx也是一个函数,称为余弦函数,这两个函数的定义域是什么?答正弦函数和余弦函数的定义域都是R.3作函数图象最基本的方法是什么?其步骤是什么?答作函数图象最基本的方法是描点法,

2、其步骤是列表、描点、连线预习导引1正弦曲线、余弦曲线正弦函数ysinx(xR)和余弦函数ycosx(xR)的图象分别叫正弦曲线和余弦曲线2“五点法”画图画正弦函数ysinx,x0,2的图象,五个关键点是(0,0),(,0),(2,0);画余弦函数ycosx,x0,2的图象,五个关键点是(0,1),(,1),(2,1)3正、余弦曲线的联系依据诱导公式cosxsin,要得到ycosx的图象,只需把ysinx的图象向左平移个单位长度即可.题型一“五点法”作正、余弦函数的图象例1用“五点法”作出下列函数的简图(1)ysinx1,x0,2;(2)y2cosx,x0,2解(1)列表:x02sinx0101

3、0sinx110121描点连线,如图(2)列表:x02cosx101012cosx32123描点连线,如图规律方法作正弦、余弦曲线要理解几何法作图,掌握五点法作图“五点”即ysin x或ycos x的图象在一个最小正周期内的最高点、最低点和与x轴的交点“五点法”是作简图的常用方法跟踪演练1(1)作出函数ysinx(0x2)的简图;(2)作出函数y的图象解(1)列表:x02sinx01010sinx01010描点并用光滑的曲线连接起来,如图(2)将y化为y|sinx|,即y其图象如图题型二正弦、余弦函数图象的应用例2(1)方程x2cosx0的实数解的个数是_(2)方程sinxlgx的解的个数是_

4、答案(1)2(2)3解析(1)作函数ycosx与yx2的简图,如图所示,可知原方程有两个实数解(2)用五点法画出函数ysinx的简图描出点,(1,0),(10,1)并用光滑曲线连接得到ylgx的图象,如图所示由图象可知方程sinxlgx的解有3个规律方法利用三角函数图象能解决求方程解的个数问题,也可利用方程解的个数(或两函数图象的交点个数)求字母参数的范围问题跟踪演练2函数f(x)sinx2|sinx|,x0,2的图象与直线yk有且仅有两个不同的交点,求k的取值范围解f(x)sinx2|sinx|图象如图,若使f(x)的图象与直线yk有且仅有两个不同的交点,根据右图可得k的取值范围是(1,3)

5、题型三利用三角函数图象求函数的定义域例3求函数y的定义域解为使函数有意义,需满足即正弦函数图象或单位圆如图所示,定义域为规律方法求三角函数定义域时,常常归结为解三角不等式组,这时可利用三角函数的图象或单位圆中三角函数线直观地求得解集跟踪演练3求函数ylg的定义域解由cosx0,得cosx.在0,2内,cosx的解为x或x.作出函数ycosx,x0,2及y的图象:由图知在0,2内cosx的解为0x或x2,所以所求函数的定义域为(kZ),即 (kZ).课堂达标1方程2xsinx的解的个数为()A1 B2C3D无穷多答案D2对于余弦函数ycosx的图象,有以下三项描述:向左向右无限伸展;与x轴有无数

6、多个交点;与ysinx的图象形状一样,只是位置不同其中正确的有()A0个B1个C2个D3个答案D解析如图所示为ycosx的图象可知三项描述均正确3函数ysinx,x0,2的图象与直线y的交点有_个答案2解析如图所示4(1)已知f(x)的定义域为0,1),求f(cosx)的定义域;(2)求函数ylgsin(cosx)的定义域解(1)0cosx02kcosx2k(kZ)又1cosx1,0cosx1.故所求函数定义域为x(2k,2k),kZ.课堂小结1.正弦、余弦曲线在研究正弦、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础2五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一