3.5对数函数

第2课时对数型函数及其性质 基础过关 1.函数f(x)logax(0a1)在a2,a上的最大值是() A.0 B.1 C.2 D.a 解析0a1,f(x)logax在a2,a上是减函数, f(x)maxf(a2)logaa22. 答案C 2.设alog54,b(log53)2,clog45,则()

3.5对数函数Tag内容描述:

1、第2课时对数型函数及其性质基础过关1.函数f(x)logax(0a1)在a2,a上的最大值是()A.0 B.1 C.2 D.a解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.答案C2.设alog54,b(log53)2,clog45,则()A.alog54log53log510,1alog54log53b(log53)2.又clog45log441.cab.答案D3.函数f(x)的定义域是_.解析由题意有解得1x2.答案(1,24.函数f(x)|logx|的单调增区间是_.解析f(x)当x1时,tlogx是减函数,f(x)logx是。

2、2.6 对数与对数函数对数与对数函数 典例精析典例精析 题型一 对数的运算 例 1计算下列各题: 12lg 22lg 2 lg 5lg 22lg 21; 2lg 2lg 5lg 8lg 50lg 40. 解析 1原式2 12lg 2212l。

3、 第四章第四章 指数函数与对数函数指数函数与对数函数 4.4.2 对数函数的图像和性质对数函数的图像和性质 本节课是新版教材人教 A 版普通高中课程标准实验教科书数学必修 1 第四章第 4.4.2 节 对数函数的图像和性质 是高中数学在指数。

4、新教材新教材4.4.2 4.4.2 对数函数的图像和性质人教对数函数的图像和性质人教 A A 版版 本节课在已学对数函数的概念,接着研究对数函数的图像和性质,从而深化学生对对数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究函数增。

5、1 4.4 对数函数对数函数 第第 1 课时课时 对数函数的概念图象及性质对数函数的概念图象及性质 学 习 目 标 核 心 素 养 1.理解对数函数的概念,会求对数函数的定义域重点难点 2能画出具体对数函数的图象,并能根据对数函数的图象说明。

6、新教材新教材4.4.2 4.4.2 对数函数的图像和性质对数函数的图像和性质人教人教 A A 版版 1掌握对数函数的图象和性质,培养学生实际应用函数的能力; 2通过观察图象,分析归纳总结对数函数的性质; 3在对数函数的学习过程中,体验数学的。

7、新教材新教材4.4.1 4.4.1 对数函数的概念人教对数函数的概念人教 A A 版版 对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题. 课程目标课。

8、3.2.2对数函数(二)一、选择题1如图,若C1,C2分别为函数ylogax和ylogbx的图象,则()A0b1Dba1答案B解析作直线y1,则直线与C1,C2的交点的横坐标分别为a,b,易知01时,满足条件;当0ba BbcaCacb Dabc考点对数值大小比较题点对数值大小比较答案D解析alog36log321,blog521,clog721,在同一坐标系内分别画出yl。

9、3.2.2对数函数(一)一、选择题1下列函数是对数函数的是()Ay2log3xByloga(2a)(a0,且a1)Cylogax2(a0,且a1)Dyln x答案D解析结合对数函数的形式ylogax(a0且a1)可知D正确2函数ylog(2x1)的定义域是()A.(1,)B.(1,)C.D.答案A解析由题意得解得即x且x1.3已知alog2,b,clog2,则它们的大小关系是()Aabc BcabCcba Dbca答案D解析由题意得alog2log2c0,故bca.4已知函数f(x)则f(log23)等于()A3 B. C9 D(log23)2答案A解析因为log23log221,所以f(log。

10、3.2.2对数函数(三)一、选择题1下列函数中,在(0,2)上为增函数的是()Ay(x1) Bylog2Cylog2 Dy(x24x5)答案D解析对于选项A,yt为减函数,tx1为增函数,所以y(x1)为减函数;对于选项B,函数ylog2在(0,1)上无意义;对于选项C,ylog2t为增函数,t在(0,2)上为减函数,所以ylog2在(0,2)上为减函数;对于选项D,yt为减函数,tx24x5在(0,2)上为减函数,所以y(x24x5)在(0,2)上为增函数2函数ylog5是()A奇函数 B偶函数C非奇非偶函数 D既是奇函数又是偶函数答案A解析因为x,所以f(x)f(x)log5(x)log5(x)log5(x21x2)0,所以函数f(x)为奇函数3若函数yloga|x2。

11、1 第第 2 课时课时 对数函数及其性质的应用对数函数及其性质的应用 学 习 目 标 核 心 素 养 1.掌握对数函数的单调性,会进行同底对数和不同底对数大小的比较重点 2通过指数函数对数函数的学习,加深理解分类讨论数形结合这两种重要数学思。

12、5对数函数51对数函数的概念5.2对数函数ylog2x的图像和性质基础过关1下列函数中是对数函数的是()Aylogx Bylog(x1)Cy2logx Dylogx1解析形如ylogax(a0,且a1)的函数才是对数函数,只有A是对数函数,故选A.答案A2函数f(x)的定义域为()A(0,2) B(0,2C(2,) D2,)解析要使函数有意义,则解得x2.答案C3函数ylog3x的定义域为(0,),则其反函数的值域是()A(0,) BRC(,0) D(0,1)解析反函数值域为原函数定义域(0,)答案A4已知函数f(x)log2(x2a)若f(3)1,则a_解析由f(3)1得log2(32a)1,所以9a2,解得a7.答案75若指数函数f(x)ax(x。

13、第四章第四章 指数函数与对数函数指数函数与对数函数 4.4.2 对数函数的图像和性质对数函数的图像和性质 1.掌握对数函数的图像及性质; 2.会运用对数函数的图像与性质解决简单问题 重点:探究对数函数的图像及性质. 难点:会求对数函数的定义。

14、3.2.2对数函数(二)学习目标1.能画出具体对数函数的图象,并能根据对数的图象说明对数函数的性质.2.能利用对数函数的性质解对数不等式.3.会用对数函数模型分析和解决一些实际问题知识点一不同底的对数函数图象的相对位置一般地,对于底数a1的对数函数,在(1,)区间内,底数越大越靠近x轴;对于底数0a1的对数函数,在(1,)区间内,底数越小越靠近x轴知识点二对数不等式的解法对数不等式的常见类型当a1时,logaf(x)logag(x)当0a1时,logaf(x)logag(x)题型一对数函数的图象例1画出函数ylg|x1|的图象解(1)先画出函数ylg x的图象(如图)(2)再画出。

15、3.2.2对数函数(三)学习目标1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.掌握对数型复合函数奇偶性的判定方法.3.掌握对数型复合函数的最值与值域知识点求f(x)logag(x)型函数的单调区间(1)先求g(x)0的解集(也就是函数的定义域)(2)在f(x)的定义域内,先求g(x)的单调区间,再按“同增异减”原则与对数函数复合.题型一对数型复合函数的单调性例1求函数y(x22x1)的值域和单调区间解设tx22x1,则t(x1)22(0,2y为单调减函数,且00,由二次函数的图象知1x1,tx22x1在(1,1)上为单调增函数,而在(1,1)上为单调减函数,而y为单调减函数,。

16、3.2.2对数函数(一)学习目标1.理解对数函数的概念.2.掌握对数函数的性质,能利用对数函数的单调性比较大小知识点一对数函数的概念一般地,函数ylogax(a0,且a1)叫做对数函数,它的定义域是(0,)知识点二对数函数的图象与性质定义ylogax (a0,且a1)底数a100,且a1);y;ylog3x;ylogx(x&。

17、新教材新教材4.4.3 4.4.3 不同函数增长的差异不同函数增长的差异人教人教 A A 版版 1.掌握常见增长函数的定义图象性质,并体会其增长的快慢. 2.理解直线上升对数增长指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学。

18、第四章第四章 指数函数与对数函数指数函数与对数函数 4.4.3 不同增长函数的差异不同增长函数的差异 1.了解指数函数对数函数线性函数 一次函数 的增长差异. 2.理解对数增长直线上升指数爆炸。 重点:函数增长快慢比较的常用方法; 难点:了。

19、5对数函数(二)一、选择题1.若loga2b1 D.ba1答案B解析因为loga2b,故0ba B.bca C.acb D.abc考点对数值大小比较题点对数值大小比较答案D解析alog36log321,bl。

20、5对数函数(一)一、选择题1.给出下列函数:y;ylog3(x1);ylog(x1)x;ylogx.其中是对数函数的有()A.1个 B.2个 C.3个 D.4个考点对数函数的概念题点对数函数的概念答案A解析不是对数函数,因为对数的真数不是只含有自变量x;不是对数函数,因为对数的底数不是常数;是对数函数.2.已知函数f(x)的定义域为M,g(x)ln(1x)的定义域为N,则MN等于()A.x|x1 B.x|x0x|x0x|x1,MNx|1x1.3.函数y的定义域是()A.(1,2 B.(1,2) C.(2,) D.(,2)答案B解析由得1<。

【3.5对数函数】相关DOC文档
4.4.2对数函数的图像和性质 教学设计1
4.4.2对数函数的图像和性质 教学设计2
《4.4对数函数》名师优质课导学案
4.4.1对数函数的概念 教学设计2
《4.4对数函数》优秀教研导学案
3.2.2对数函数(二)学案(含答案)
3.2.2对数函数(三)学案(含答案)
3.2.2对数函数(一)学案(含答案)
《4.4对数函数》获奖导学案
《4.4对数函数》教学导学案
3.5对数函数(二)课时对点练(含答案)
3.5对数函数 课时对点练(含答案)
标签 > 3.5对数函数[编号:172964]