3.2.2对数函数二学案含答案

5对数函数(二) 一、选择题 1.若loga2logb20,则下列结论正确的是() A.0ab1 B.0bab1 D.ba1 答案B 解析因为loga20,logb20, 所以0a1,0b1, 又loga2b, 故0baba B.bca C.acb D.abc 考点对数值大小比较 题点对数值大小比较

3.2.2对数函数二学案含答案Tag内容描述:

1、5对数函数(二)一、选择题1.若loga2b1 D.ba1答案B解析因为loga2b,故0ba B.bca C.acb D.abc考点对数值大小比较题点对数值大小比较答案D解析alog36log321,bl。

2、第2课时对数型函数及其性质基础过关1.函数f(x)logax(0a1)在a2,a上的最大值是()A.0 B.1 C.2 D.a解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.答案C2.设alog54,b(log53)2,clog45,则()A.alog54log53log510,1alog54log53b(log53)2.又clog45log441.cab.答案D3.函数f(x)的定义域是_.解析由题意有解得1x2.答案(1,24.函数f(x)|logx|的单调增区间是_.解析f(x)当x1时,tlogx是减函数,f(x)logx是。

3、3.2.2对数函数(一)一、选择题1下列函数是对数函数的是()Ay2log3xByloga(2a)(a0,且a1)Cylogax2(a0,且a1)Dyln x答案D解析结合对数函数的形式ylogax(a0且a1)可知D正确2函数ylog(2x1)的定义域是()A.(1,)B.(1,)C.D.答案A解析由题意得解得即x且x1.3已知alog2,b,clog2,则它们的大小关系是()Aabc BcabCcba Dbca答案D解析由题意得alog2log2c0,故bca.4已知函数f(x)则f(log23)等于()A3 B. C9 D(log23)2答案A解析因为log23log221,所以f(log。

4、3.2.2对数函数(三)一、选择题1下列函数中,在(0,2)上为增函数的是()Ay(x1) Bylog2Cylog2 Dy(x24x5)答案D解析对于选项A,yt为减函数,tx1为增函数,所以y(x1)为减函数;对于选项B,函数ylog2在(0,1)上无意义;对于选项C,ylog2t为增函数,t在(0,2)上为减函数,所以ylog2在(0,2)上为减函数;对于选项D,yt为减函数,tx24x5在(0,2)上为减函数,所以y(x24x5)在(0,2)上为增函数2函数ylog5是()A奇函数 B偶函数C非奇非偶函数 D既是奇函数又是偶函数答案A解析因为x,所以f(x)f(x)log5(x)log5(x)log5(x21x2)0,所以函数f(x)为奇函数3若函数yloga|x2。

5、3.2.2对数函数(二)一、选择题1如图,若C1,C2分别为函数ylogax和ylogbx的图象,则()A0b1Dba1答案B解析作直线y1,则直线与C1,C2的交点的横坐标分别为a,b,易知01时,满足条件;当0ba BbcaCacb Dabc考点对数值大小比较题点对数值大小比较答案D解析alog36log321,blog521,clog721,在同一坐标系内分别画出yl。

6、3.2.2对数函数(三)学习目标1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.掌握对数型复合函数奇偶性的判定方法.3.掌握对数型复合函数的最值与值域知识点求f(x)logag(x)型函数的单调区间(1)先求g(x)0的解集(也就是函数的定义域)(2)在f(x)的定义域内,先求g(x)的单调区间,再按“同增异减”原则与对数函数复合.题型一对数型复合函数的单调性例1求函数y(x22x1)的值域和单调区间解设tx22x1,则t(x1)22(0,2y为单调减函数,且00,由二次函数的图象知1x1,tx22x1在(1,1)上为单调增函数,而在(1,1)上为单调减函数,而y为单调减函数,。

7、3.2.2对数函数(一)学习目标1.理解对数函数的概念.2.掌握对数函数的性质,能利用对数函数的单调性比较大小知识点一对数函数的概念一般地,函数ylogax(a0,且a1)叫做对数函数,它的定义域是(0,)知识点二对数函数的图象与性质定义ylogax (a0,且a1)底数a100,且a1);y;ylog3x;ylogx(x&。

8、3.2.2对数函数(二)学习目标1.能画出具体对数函数的图象,并能根据对数的图象说明对数函数的性质.2.能利用对数函数的性质解对数不等式.3.会用对数函数模型分析和解决一些实际问题知识点一不同底的对数函数图象的相对位置一般地,对于底数a1的对数函数,在(1,)区间内,底数越大越靠近x轴;对于底数0a1的对数函数,在(1,)区间内,底数越小越靠近x轴知识点二对数不等式的解法对数不等式的常见类型当a1时,logaf(x)logag(x)当0a1时,logaf(x)logag(x)题型一对数函数的图象例1画出函数ylg|x1|的图象解(1)先画出函数ylg x的图象(如图)(2)再画出。

【3.2.2对数函数二学案含答案】相关DOC文档
标签 > 3.2.2对数函数二学案含答案[编号:136062]