3.4.2函数模型及其应用课后作业含答案

第2课时习题课对数函数的图像及其性质的应用 基础过关 1若f(x)mlog2x为对数函数,则() Am1 Bm2 CmR Dm1 解析只有形如ylogax(a0且a1)的函数,才是对数函数 答案A 2若对数函数过点(4,2),则其解析式为() Ayx By2x Cylog4x Dylog2x 解析设

3.4.2函数模型及其应用课后作业含答案Tag内容描述:

1、第2课时习题课对数函数的图像及其性质的应用基础过关1若f(x)mlog2x为对数函数,则()Am1 Bm2 CmR Dm1解析只有形如ylogax(a0且a1)的函数,才是对数函数答案A2若对数函数过点(4,2),则其解析式为()Ayx By2x Cylog4x Dylog2x解析设解析式为ylogax(a0且a1),因为点(4,2)在对数函数图像上,故2loga4,即a2.答案D3函数f(x)loga(2x)的定义域为()A(0,) B(2,)C(,2) D(,0)解析由题意2x0,即x2,故定义域为(,2)答案C4已知函数f(x)ln(x)1,f(a)4,则f(a)_解析设g(x)f(x)1ln(x),则g(x)为奇函数由f(a)4,知g(a)f(a)13.g(a)3,则。

2、第2课时指数函数及其性质的应用基础过关1.已知a30.2,b0.23,c(3)0.2,则a,b,c的大小关系为()A.abc B.bacC.cab D.bca解析a30.2(1,3),b0.2353125,c(3)0.2ac.答案B2.若函数f(x)是R上的增函数,则实数a的取值范围为()A.4,8) B.(1,)C.(1,8) D.4,)解析由题意可知,yf(x)在R上是增函数,所以解得4a8.答案 A3.函数y2x2ax在(,1)上是增函数,则实数a的取值范围是_.解析由复合函数的单调性知,ux2ax的对称轴x1,即a2.答案2,)4.若函数f(x)则不等式f(x)的解集为_.解析当x0时,由f(x)得()x,0x1;当x0时,不等式明显不成立,。

3、12.9 函数模型及其应用A 组 基础题组1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )答案 C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除 A.因交通堵塞停留了一段时间,与学校的距离不变,故排除 D.后来为了赶时间加快速度行驶,故排除 B.故选 C.2.某工厂 6 年来生产某种产品的情况是:前 3 年年产量的增长速度越来越快,后 3 年的年产量保持不变,将该厂 6 年来这种产品的总产量 C 与时间 t(年)的函数关系用图象表示,正确的是( )答案 A 依题意,前 3。

4、3.2 习题课课时目标 1.进一步体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.2.掌握几种初等函数的应用.3.理解用拟合函数的方法解决实际问题的方法1在我国大西北,某地区荒漠化土地面积每年平均比上年增长 10.4%,专家预测经过x 年可能增长到原来的 y 倍,则函数 yf(x)的图象大致为( )2能使不等式 log2x1)的函数关系分别是 f1(x)x 2,f 2(x)4x ,f 3(x) log2x,f 4(x)2 x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )Af 1(x)x 2 Bf 2(x)4xCf 3(x)log 2x Df 4(x)2 x4某城市客运公司确定。

5、2.5.2形形色色的函数模型基础过关1某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了akm,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了bkm(ba),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为()答案C解析由题意可知,s是关于时间t的一次函数,所以其图象特征是直线上升由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段然后原路返回,图象下降,再调转车头继续前进,则直线一致上升2国内快递1000g以内的包。

6、3.4.2函数模型及其应用学习目标1.理解函数模型的概念和作用.2.能用函数模型解决简单的实际问题.3.了解建立拟合函数模型的思想和步骤,并了解检验和调整的必要性知识点一函数模型常见函数模型解析式条件一次函数模型ykxbk0反比例函数模型ybk0二次函数模型一般式:yax2bxc顶点式:ya2a0指数型函数模型ybaxcb0,a0且a1对数型函数模型ymlogaxnm0,a0且a1幂函数型模型yaxnba0,n1知识点二用函数模型解决实际问题1解答应用问题的基本思想2解答应用问题的程序概括为“四步八字”,即审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型。

标签 > 3.4.2函数模型及其应用课后作业含答案[编号:170383]