2.10函数模型及其应用 考情考向分析考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以解答题为主,中高档难度 1几类函数模型 函数模型 函数解析式 一次函数模型 f(x)axb(a,b为常数,a0) 反比例函数模型 f(x)b(k,b为常数且k0)
高考数学一轮复习总教案2.9函数模型及其应用Tag内容描述:
1、2.10函数模型及其应用考情考向分析考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以解答题为主,中高档难度1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂函数模型f(x)axnb (a,b为常数,a0)2.三种函数模型的性质函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单。
2、课时跟踪检测(十二) 函数模型及其应用 一抓基础,多练小题做到眼疾手快1某种商品进价为 4 元/件,当日均零售价为 6 元/件,日均销售 100 件,当单价每增加 1 元,日均销量减少 10 件,试计算该商品在销售过程中,若每天固定成本为 20 元,则预计单价为_元/件时,利润最大解析:设单价为 6 x,日均销售量为 10010 x,则日利润 y(6 x4)(10010 x)2010 x280 x18010( x4) 2340(0 x10)所以当 x4 时, ymax340.即单价为 10 元/件,利润最大答案:102(2018盐城中学检测)“好酒也怕巷子深” ,许多著名品牌是通过广告宣传进入消费者视线的已知某。
3、2.9 函数模型及其应用,第二章 函数概念与基本初等函数,ZUIXINKAOGANG,最新考纲,1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.几类函数模型,知识梳理,ZHISHISHULI,2.三种函数模型的性质,递增,递增,y轴,x轴,请用框图概括解函数应。
4、2.9函数模型及其应用最新考纲1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,b0,a0且a1)对数函数模型f(x)blogaxc(a,b,c为常数,b0,a0且a1)幂。
5、12.9 函数模型及其应用A 组 基础题组1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )答案 C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除 A.因交通堵塞停留了一段时间,与学校的距离不变,故排除 D.后来为了赶时间加快速度行驶,故排除 B.故选 C.2.某工厂 6 年来生产某种产品的情况是:前 3 年年产量的增长速度越来越快,后 3 年的年产量保持不变,将该厂 6 年来这种产品的总产量 C 与时间 t(年)的函数关系用图象表示,正确的是( )答案 A 依题意,前 3。
6、2.9函数模型及其应用最新考纲考情考向分析1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,题型以解答题为主,中高档难度.1几类函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)反比例函数模型f(x)b(k,b为常数且k0)二次函数模型f(x)ax2bxc(a,b。
7、 2.9 函数模型及其应用函数模型及其应用 最新考纲 考情考向分析 1.了解指数函数、对数函数、幂函数的增长特 征,结合具体实例体会直线上升、指数增长、 对数增长等不同函数类型增长的含义. 2.了解函数模型(如指数函数、对数函数、幂 函数、分段函数等在社会生活中普遍使用的 函数模型)的广泛应用. 考查根据实际问题建立函数模型解决 问题的能力,常与函数图象、单调性、 最值及方程、不等式交汇命题,题型以 解答题为主,中高档难度. 1几类函数模型 函数模型 函数解析式 一次函数模型 f(x)axb(a,b 为常数,a0) 反比例函数模型 f(x)k xb(k。
8、29 函数模型及其应用函数模型及其应用 教材梳理 1几类函数模型 函数模型 函数解析式 一次函数模型 反比例函数模型 fxk xbk,b 为常数,且 k0 二次函数模型 指数型函数模型 fxbaxca,b,c 为常数,a0 且 a1,b0 。
9、2.9 函数模型及其应用函数模型及其应用 典例精析典例精析 题型一 运用指数模型求解 例 1按复利计算利率的一种储蓄,本金为 a 元,每期利率为 r,设本利和为 y,存期为 x,写出本利和 y 随期数 x 的变化函数式.如果存入本金 10 。