2020年中考数学专题复习图形中的动点问题培优

探究动点背景下的线段最值问题探究动点背景下的线段最值问题 【专题综述】 图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到 比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法: 1、代数解法.通过设未知量,建立函数关系或列方程

2020年中考数学专题复习图形中的动点问题培优Tag内容描述:

1、探究动点背景下的线段最值问题探究动点背景下的线段最值问题 【专题综述】 图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到 比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法: 1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式 来求解. 2、几何方法.常通取特殊点,如线段中点、。

2、 专题专题 07 动点折叠类问题中图形存在性动点折叠类问题中图形存在性及落点及落点“有迹性有迹性”问题问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多。

3、 专题专题 10 动点类综合题目探究动点类综合题目探究 题型一:题型一:二次函数中三角形面积最值二次函数中三角形面积最值存存及平行四边形存及平行四边形存在性问题在性问题 例例 1. (2019 巴中) 巴中) 如图, 抛物线 2 5yaxbx(a0) 经过 x 轴上的点 A(1,0)和点 B 及 y 轴上的点 C, 经过 B、C 两点的直线为yxn. (1)求抛物线解析式; (2)动点 P 从点 A 出发,在线段 AB 上以每秒 1 个单位的速度向 B 运动,同时动点 E 从点 B 出发,在线段 BC 上以每秒 2 个单位的速度向 C 运动. 当其中一个点到达终点时, 另一点也停止运动. 设。

4、专题专题 09 09 圆中的长度与面积、动点问题圆中的长度与面积、动点问题 1定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个 内角的遥望角 (1)如图 1,E 是 ABC 中A 的遥望角,若A,请用含 的代数式表示E (2)如图 2,四边形 ABCD 内接于O,四边形 ABCD 的外角平分线 DF 交O 于点 F,连结 BF 并延长交 CD 的延长线于。

5、(精品资料)(精品资料)20202020 年中考数学压轴题突破年中考数学压轴题突破专题七专题七 几何几何 图形动点运动问题图形动点运动问题 类型一 【探究动点运动过程中线段之间的数量关系】 【典例指引 1】在 ABC 中,ACB45 ,点 D 为射线 BC 上一动点(与点 B、C 不重合) ,连接 AD,以 AD 为一边在 AD 右侧作正方形 ADEF (1)如果 ABAC,如图 1,且点 D 在线段 BC 上运动,判断BAD CAF(填“”或“”) ,并证 明:CFBD (2)如果 ABAC,且点 D 在线段 BC 的延长线上运动,请在图 2 中画出相应的示意图,此时(1)中的结 论是否成立?。

6、 专题专题 02 动点问题中的函数图象及规律探索问题动点问题中的函数图象及规律探索问题 一、基础知识点综述一、基础知识点综述 动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进 而获取相应函数的解析式及函数值变化规律,达到求解的目的. 考查的重点是分段函数解析式的求解. 探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳 能力,注意从特殊到一般的归纳方法. 二二、主要思想方法主要思想方法 分类讨论、数学归纳. 三三、精品例题解析精品例题解。

7、 专题专题 08 动点类题目旋转问题探究动点类题目旋转问题探究 题型一:题型一:旋转旋转问题中问题中三点共线三点共线问题问题 例例 1 ( (2019绍兴)绍兴)如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是底边为 BC 的等腰 直角三角形,摆动臂 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中, 当 A、D、M 三点在同一直线上时,求 AM 的长. 当 A、D、M 三点为同一直角三角形的顶点时,求 AM 的长. (2) 若摆动臂 AD 顺时针旋转 90, 点 D 的位置由ABC 外的点 D1转到其内的点 D2处, 连接 D1。

8、 专题专题 01 动点问题中的最值、最短路径问题动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想) ,本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深 探讨此类题目的求解技巧及方法. 一、基础知识点综述一、基础知识点综述 1. 两点之间,线段最短; 2. 垂。

9、 专题专题 02 动点问题中的函数图象及规律探索问题动点问题中的函数图象及规律探索问题 一、基础知识点综述一、基础知识点综述 动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进而获 取相应函数的解析式及函数值变化规律,达到求解的目的. 考查的重点是分段函数解析式的求解. 探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳能力, 注意从特殊到一般的归纳方法. 二二、主要思想方法主要思想方法 分类讨论、数学归纳. 三三、精品例题解析精品例题解。

10、【考查知识点】 “两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 原型-“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩 形、正方形、梯形、圆、坐标轴、抛物线等。 【解题思路】找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.求线段和 的最小值需要用到三个基本知识:两点之间,线段最短;轴对称。

11、 1 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 【分析】 (1)当 a:b=1 时,可得四边形 ABCD 为正方形。

12、 专题专题 01 动点问题中的最值、最短路径问题动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想) ,本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深 探讨此类题目的求解技巧及方法. 一、基础知识点综述一、基础知识点综述 1. 两点之间,线段最短; 2. 垂。

13、 专题专题 08 动点类题目旋转问题探究动点类题目旋转问题探究 题型一:题型一:旋转旋转问题中问题中三点共线三点共线问题问题 例例 1 ( (2019绍兴)绍兴)如图 1 是实验室中的一种摆动装置,BC 在地面上,支架 ABC 是底边为 BC 的等腰 直角三角形,摆动臂 AD 可绕点 A 旋转,摆动臂 DM 可绕点 D 旋转,AD=30,DM=10. (1)在旋转过程中, 当 A、D、M 三点在同一直线上时,求 AM 的长. 当 A、D、M 三点为同一直角三角形的顶点时,求 AM 的长. (2) 若摆动臂 AD 顺时针旋转 90, 点 D 的位置由ABC 外的点 D1转到其内的点 D2处, 连接 D1。

14、 1 专题专题 06 动点折叠类问题中图形存在性问题动点折叠类问题中图形存在性问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多,题意新颖,具有创新力. 其。

15、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 题型二:二次函数中几何图形最值求题型二:二次函数中几何。

16、 专题专题 06 动点折叠类问题中图形存在性问题动点折叠类问题中图形存在性问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多,题意新颖,具有创新力. 其主。

17、 专题专题 09 动点类题目动点类题目图形图形最值问题探究最值问题探究 题型一:题型一:矩形中的相似求解矩形中的相似求解 例例 1.(2019绍兴)绍兴)如图,矩形 ABCD 中,AB=a,BC=b,点 M、N 分别在边 AB、CD 上,点 E、F 分 别在边 BC、AD 上,MN、EF 交于点 P. 记 k=MN:EF. (1)若 a:b 的值为 1,当 MNEF 时,求 k 的值. (2)若 a:b 的值为 2 1 ,求 k 的最大值和最小值. (3)若 k 的值为 3,当点 N 是矩形的顶点,MPE=60 ,MP=EF=3PE 时,求 a:b 的值. BC DA E M F N 【分析】 (1)当 a:b=1 时,可得四边形 ABCD 为正方形,。

18、 专题专题 06 动点折叠类问题中图形存在性问题动点折叠类问题中图形存在性问题 一、基础知识点综述一、基础知识点综述 动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运 动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题, 更能体现其解题核心动中求静, 灵活运用相关数学 知识进行解答,有时需要借助或构造一些数学模型来解答. 实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分, 题型繁多,题意新颖,具有创新力. 其主。

19、图形中动点的运动知识互联网题型一:因动点产生的函数关系问题思路导航我们初二已经学过了三角形、四边形上动点产生的函数问题,初三已学习了新的图形圆,出现了一些以圆为背景,因点的运动产生的函数问题,这些问题的重点在于定性刻画两个变量之间的关系. 典题精练1. 圆中点的运动产生函数图象问题【例1】 如图,是的直径,为圆上一点点从点出发,沿运动到点,然后从点沿运动到点假如点在整个运动过程中保持匀速,则下面各图中,能反映点与点的距离随时间变化的图象大致是( )A B C D 如图,点、为圆的四等分点,动点从圆心出发,沿线段。

20、图形的动点问题知识互联网题型一:点运动产生函数思路导航我们初二已经学过了三角形、四边形上动点产生的函数问题,初三已学习了新的图形圆,出现了一些以圆为背景,因点的运动产生的函数问题,这些问题的重点在于定性刻画两个变量之间的关系. 典题精练【例1】 如图,是的直径,为圆上一点点从点出发,沿运动到点,然后从点沿运动到点假如点在整个运动过程中保持匀速,则下面各图中,能反映点与点的距离随时间变化的图象大致是( )A B C D 如图,点、为圆的四等分点,动点从圆心出发,沿线段线段的路线作匀速运动设运动时间为秒,的度数。

【2020年中考数学专题复习图】相关DOC文档
标签 > 2020年中考数学专题复习图形中的动点问题培优[编号:121785]