专题 11 解三角形的技巧与解题规律(2)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三
2020年高考数学函数专题训练含答案解析Tag内容描述:
1、专题 11 解三角形的技巧与解题规律(2)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。
2、专题 10 解三角形的技巧与解题规律(1)一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 三角形与三角函数的综合3. 正余弦定理及三角形中的射影定理的应用4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题7三角形的综合二 【学习目标】掌握三角形形状的判断方法;三角形有关三角函数求值,能证明与三角形内角有关的三角恒等式三【方法总结】三角形中的三角函数主要涉及三角形的边角转化,三角形形状判断,三角形内三角函数求值及三角恒等式证明等以正弦、余弦定理为知识框架,以三角形为主要依托,结合实际。
3、2020 年高考数学一模试卷(文科)年高考数学一模试卷(文科) 一、选择题(共 12 小题) 1已知集合 M0,x2,N1,2,若 MN2,则 MN( ) A0,x2,1,2 B2,0,1,2 C0,1,2 D 0, 1, , , 2 2已知复数 z 满足(1i)z2,i 为虚数单位,则 z 为( ) A1+i B1i C1+i D1i 3设 , 是向量,则“ ”是“| | |”的( ) A充分不必要条件 B充要条件 C必要不充分条件 D既不充分也不必要条件 4若空间中三条两两不同的直线 l1,l2,l3,满足 l1l2,l2l3,则下列结论一定正确的是 ( ) Al1l3 Bl1与 l3既不垂直又不平行 Cl1l3 Dl1与 l3的位置关系不确。
4、20192020 学年度下学期高三第二次模拟考试试学年度下学期高三第二次模拟考试试试试题题 数学(理科)数学(理科) 时间:时间:120 分钟分钟 试卷满分:试卷满分:150 分分 本试卷分第本试卷分第 I 卷(选择题)和第卷(选择题)和第卷(非选择题)两部分卷(非选择题)两部分 第第 1 卷卷 一、选择题(本大题共一、选择题(本大题共 12 小题,每小题小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的分,在每小题给出的四个选项中,只有一项是符合题目要求的 1已知0)1 (xxxA,1xxB,则 AB=( ) A) 1 , 0( BR C) 1。
5、专题 15 三角形的五心与向量一【知识点】1.三角形的重心:三角形各边中线的交点2. 三角形的垂心:三角形各边高线的交点3. 三角形的内心:三角形各个内角平分线的交点4. 三角形的外心:三角形各边垂直平分线的交点5. 三角形的中心:正三角形四心合一为中心二 【学习目标】1理解三角形五心的概念2掌握五心的向量表示3掌握五心的向量表示的轨迹问题三 【题型方法】(一)三角形的内心例 1. O是平面上一定点, ,ABC是平面上不共线的三个点,动点 P满足:,0,)|PA,则 P的轨迹一定通过 ABC的( )A内心 B垂心 C重心 D外心【答案】A【解析】 |B、AC。
6、2020 年高考(理科)数学一模试卷年高考(理科)数学一模试卷 一、选择题(共 12 小题). 1已知集合 A,B,则 AB( ) A2,2 B(1,+) C(1,2 D(,1(2,+) 2已知复数 z 在复平面内对应的点的坐标为(1,2),则( ) A B C D 3若是非零向量,则“ ”是“”的( ) A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件 4函数的部分图象大致为( ) A B C D 5如图茎叶图记录的是甲、乙两个班级各 5 名同学在一次数学小题训练测试中的成绩(单 位: 分, 每题 5 分, 共 16 题) 已知两组数据的平均数相等, 则 x。
7、专题 09 正弦定理与余弦定理的综合应用一、本专题要特别小心:1.解三角形时的分类讨论(锐角钝角之分)2. 边角互化的选取3. 正余弦定理的选取4.三角形中的中线问题 5.三角形中的角平分性问题6.多个三角形问题二 【学习目标】掌握正、余弦定理,能利用这两个定理及面积计算公式解斜三角形,培养运算求解能力三 【方法总结】1.利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角( 从而进一步求出其他的边和角).2.由正弦定理容易得到:在三角形中,大角。