2019年中考数学函数考点全突破专题05

备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】圆和二次函数都是初中数学重点知识,是圆和二次函数都是初中数学重点知识,是 压轴题中的常见题目。而二次函数与圆的结合则常常是

2019年中考数学函数考点全突破专题05Tag内容描述:

1、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】圆和二次函数都是初中数学重点知识,是圆和二次函数都是初中数学重点知识,是 压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景压轴题中的常见题目。而二次函数与圆的结合则常常是高难度的压轴题。以二次函数为背景 的问题中,圆的知识常常以圆的基本知识、与圆有关的位置关系、构造圆和隐形圆为考察内的问题中,圆的知识常。

2、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 10 二次函数背景下的与圆有关的问题二次函数背景下的与圆有关的问题 【方法综述】【方法综述】 圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合圆和二次函数都是初中数学重点知识,是压轴题中的常见题目。而二次函数与圆的结合 则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与则常常是高难度的压轴题。以二次函数为背景的问题中,圆的知识常常以圆的基本知识、与 圆有关的位置关系、构。

3、 备战 2019 年中考数学压轴题之二次函数 专题专题 03 二次函数背景下的图形变换二次函数背景下的图形变换 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图。

4、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。

5、 【方法综述】【方法综述】 本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学本类型主要研究二次函数背景下的图形变换。因为图形的平移、折叠和旋转是许多数学 问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。问题进行命题的基础,因此这类问题大量存在,并且和其它问题相交织。 二次函数背景下的图形变换主要分成两类:二次函数背景下的图形变换主要分成两类: 一个是二次函数图象的图形变换,此类问题在解决二次函数图象平移时可以采用顶点式一个是二次函数图象的图形变换,此类问题。

6、 备战备战 20192019 年年中考中考数学数学压轴题压轴题之之二次函数二次函数 专题专题 01 01 二次函数基础上的数学建模类二次函数基础上的数学建模类 【方法【方法综述综述】 此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造此类问题以实际问题为背景,一般解答方法是先按照题目要求利用各种数学知识,构造 二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问二次函数的数学模型,再通过将临界点带入讨论或者通过考察二次函数最值讨论解决实际问 题。题。 【典例示范】【。

7、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 02 二次函数与营销问题二次函数与营销问题 【方法综述】【方法综述】来源来源:学学.科科.网网 Z.X.X.K 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等。

8、专题05 一次函数1(2019扬州)若点P在一次函数的图象上,则点P一定不在A第一象限B第二象限C第三象限D第四象限2(2019绍兴)若三点,在同一直线上,则的值等于A-1B0C3D43(2019苏州)若一次函数(为常数,且)的图象经过点,则不等式的解集为ABCD4(2019临沂)下列关于一次函数的说法,错误的是A图象经过第一、二、四象限B随的增大而减小C图象与轴交于点D当时,5(2019梧州)直线y=3x+1向下平移2个单位,所得直线的解析式是Ay=3x+3By=3x-2Cy=3x+2Dy=3x-16(2019杭州)已知一次函数和,函数和的图象可能是ABCD7(2019邵阳)一次函数y1=k1x+b。

9、 【方法综述】【方法综述】 此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量此类问题以营销问题为背景,通过各种数学知识的结合,考察和二次函数最值和自变量 取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根取值范围有关的问题。首先,考察有关利润的函数模型的构造,解答方法是通过利润公式根 据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到据题意找出等量关系;其次考察函数的最值计算、判断,解答方法是通过二次函数特性找到。

10、专题05 一次函数1(2019扬州)若点P在一次函数的图象上,则点P一定不在A第一象限B第二象限C第三象限D第四象限【答案】C【解析】一次函数y=-x+4中k=-10,所以一次函数y=-x+4的图象经过一、二、四象限,又点P在一次函数y=-x+4的图象上,所以点P一定不在第三象限,故选C2(2019绍兴)若三点,在同一直线上,则的值等于A-1B0C3D4【答案】C【解析】设经过(1,4),(2,7)两点的直线解析式为y=kx+b,y=3x+1,将点(a,10)代入解析式,则a=3,故选C3(2019苏州)若一次函数(为常数,且)的图象经过点,则不等式的解集为ABCD【答案】D【解析。

11、 备战备战 2019 年中考数学压轴题之二次函数年中考数学压轴题之二次函数 专题专题 05 二次函数背景下的特殊三角形存在性判定二次函数背景下的特殊三角形存在性判定 【方法综述】【方法综述】 特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,此类问题此类问题 分为固定边的三角形计算与判定和三角形的分类分为固定边的三角形计算与判定和三角形的分类讨论。讨论。 直角三角形的分类讨论要对三边分别为斜边的情况分类讨论,主要应用直角的存在。

12、2021 年中考一轮复习高频考点二次函数最值应用小专题突破训练年中考一轮复习高频考点二次函数最值应用小专题突破训练 1若一次函数 y(a+1)x+a 的图象过第一、三、四象限,则二次函数 yax2ax( ) A有最大值 B有最大值 C有最小值 D有最小值 2二次函数 y(x1)2+5,当 mxn 且 mn0 时,y 的最小值为 2m,最大值为 2n,则 m+n 的值为 ( ) A B2 C D 3。

13、 【方法综述】【方法综述】 特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,特殊三角形包括直角三角形和等腰三角形,在每一种种特殊三角形的基础上,此类问题此类问题 分为固定边的三角形计算与判定和三角形的分类讨论。分为固定边的三角形计算与判定和三角形的分类讨论。 直角三角形的分类讨论要对三边分别为斜边的情况分类讨论,主要应用直角的存在,并直角三角形的分类讨论要对三边分别为斜边的情况分类讨论,主要应用直角的存在,并 以此为条件利用勾股定理和三角形相似构造等式,同时还有可能应用隐形的圆中。

14、专题四专题四 函数图像与性质的选、填问题函数图像与性质的选、填问题 类型 1 二次函数图像与字母的关系 1如图,抛物线 yax2bxc(a0)的对称轴为直线 x1,给出下列结论: b24ac;abc0;ac;4a2bc0,其中正确的个数有( ) A1 个 B2 个 C3 个 D4 个 2如图,抛物线 y11 2(x1) 21 与 y 2a(x4) 23 交于点 A(1,3),过点 A 作 x。

15、2021 年中考数学复习高频考点二次函数的应用专题突破训练年中考数学复习高频考点二次函数的应用专题突破训练 1函数 2 43ykxx与x轴有交点,则k的范围是( ) A 4 3 k B 4 3 k 且0k C 4 3 k D 4 3 k 且0k 2已知二次函数 2 812yxx与x轴的交点为A,C(点A在点C的左侧),与y轴的交点为B,顶 点部分为D,若点,P x y是四边形ABCD边上的点,。

16、专题六专题六 函数的实际应用问题函数的实际应用问题 类型 1 方案与最值问题 1江南农场收割小麦,已知 1 台大型收割机和 3 台小型收割机 1 小时可以收割小麦 1.4 公顷,2 台大型收 割机和 5 台小型收割机 1 小时可以收割小麦 2.5 公顷 (1)每台大型收割机和每台小型收割机 1 小时收割小麦各多少公顷? (2)大型收割机每小时费用为 300 元,小型收割机每小时费用为 200 元,。

17、专题五专题五 函数与几何综合运用函数与几何综合运用 类型 1 存在性问题 存在性问题一般有以下题型:是否存在垂直、平行位置关系;等腰、直角三角形、(特殊)平行四边 形形状关系;最大、最小值数量关系等 1如图,已知二次函数 y1x213 4 xc 的图象与 x 轴的一个交点为 A(4,0),与 y 轴的交点为 B,过 A、 B 的直线为 y2kxb. (1)求二次函数的解析式及点 B 的坐标; (2。

18、 1 一、考点分析:一、考点分析:二次函数的综合题中在第二三小问比较常考到相似三角形的问题,这类题 目出现在压轴题目中的概率比较高,难度系数也是偏大的,对于学生的计算和综合知识掌握要 求比较高。我们要利用我们现学的相似的知识在平面直角坐标系中研究。 二、解决此类题目的基本步骤与思路二、解决此类题目的基本步骤与思路 1.抓住相似的两个目标三角形,找出已知条件(例如已知边、已知角度、已知点坐标等) 2.找现成的等量关系,例如相等的角度从而确定下来对应关系 3. 运用分类讨论思想,几种不同相似的可能性逐一讨论 4. 充分。

19、 1 考纲要求 命题趋势 1理解二次函数的有关概念 2会用描点法画二次函数的图象,能从图象上认 识二次函数的性质 3会运用配方法确定二次函数图象的顶点、开口 方向和对称轴,并会求解二次函数的最值问题 4熟练掌握二次函数的上下左右平移 5熟练掌握二次函数解析式的求法. 二次函数是中考的重点内 容,题型主要有选择题、填空 题及解答题,而且常与方程、 不等式、几何知识等结合在一 起综合考查,且一般为压轴 题中考命题不仅考查二次函 数的概念、图象和性质等基础 知识,而且注重多个知识点的 综合考查以及对学生应用二次 函数解决实际问。

20、 1 考纲要求 命题趋势 1理解反比例函数的概念,能根据已知 条件确定反比例函数的解析式 2会画反比例函数图象,根据图象和解 析式探索并理解其基本性质 反比例函数是中考命题 热点之一,主要考查反比例函 数的图象、性质及解析式的确 定,也经常与一次函数、二次 函数及几何图形等知识综合 考查考查形式以选择题、填 空题为主. 知识梳理知识梳理 一、反比例函数的概念 一般地,形如_(k 是常数,k0)的函数叫做反比例函数 1反比例函数 yk x中的 k x是一个分式,所以自变量_,函数与 x 轴、y 轴无交点 2反比例函数解析式可以写成 xyk(k0),它。

【2019年中考数学函数考点全】相关DOC文档
标签 > 2019年中考数学函数考点全突破专题05[编号:125006]