三角函数与解三角形热点问题(解题指导)三年考情分析热点预测 真题印证 核心素养三角函数的图象与性质2018全国,10;2018全国,8;2018全国,6;2017浙江,17;2017山东,16;2017全国,14直观想象、逻辑推理三角恒等变换2018浙江,18;2018江苏,16;2018全国,15
2019年高考数学含解析之 函数与导数热点问题1专项训练Tag内容描述:
1、三角函数与解三角形热点问题(解题指导)三年考情分析热点预测 真题印证 核心素养三角函数的图象与性质2018全国,10;2018全国,8;2018全国,6;2017浙江,17;2017山东,16;2017全国,14直观想象、逻辑推理三角恒等变换2018浙江,18;2018江苏,16;2018全国,15;2018全国,4; 2017全国,15;2016全国,14逻辑推理、数学运算解三角形2018全国,17;2018全国,6,2017全国,17;2018北京,15;2018天津,15;2016全国,17逻辑推理、数学运算审题答题指引1.教材与高考对接三角函数的图象与性质【题根与题源】(必修 4P147 复习参考题 A 。
2、三角函数与解三角形热点问题(专项训练)1.已知函数 f(x)sin x 2 sin23x(1)求 f(x)的最小正周期;(2)求 f(x)在区间 上的最小值 .0,232.(2019济南调研)在ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知 asin A4bsin B,ac (a2b 2c 2).5(1)求 cos A 的值;(2)求 sin(2BA)的值.3.已知函数 f(x)sin 2xcos 2x2 sin xcos x(xR ).3(1)求 f(x)的最小正周期;(2)在ABC 中,角 A,B,C 的对边分别为 a,b,c,若 f(A)2,c5,cos B ,求ABC 中线 AD 的长.174.(2018湘中名校联考)已知函数 f(x)cos x(cos x sin x).3(1)求 f(x)的最小值;(2)在ABC 。
3、数列热点问题(专项训练)1.已知a n是公差为 3 的等差数列,数列b n满足 b11,b 2 ,13anbn1 b n1 nb n.(1)求a n的通项公式;(2)求b n的前 n 项和.2.已知数列a n满足 a1 ,且 an1 .12 2an2 an(1)求证:数列 是等差数列;1an(2)若 bna nan1 ,求数列b n的前 n 项和 Sn.3.(2019长郡中学联考)已知a n是等差数列,b n是等比数列,a11,b 12,b 22a 2,b 32a 32.(1)求a n, bn的通项公式;(2)若 的前 n 项和为 Sn,求证: Sn2.anbn4.(2019广州一模)已知数列a n的前 n 项和为 Sn,数列 是首项为 1,公差为 2 的等差数Snn列.(1)求数列a n的通项公。
4、概率与统计热点问题(专项训练)1.(2019淮北一模)如图为 2018 届淮北师范大学数学与应用数学专业 N 名毕业生的综合测评成绩(百分制) 分布直方图,已知 8090 分数段的学员数为 21 人.(1)求该专业毕业总人数 N 和 9095 分数段内的人数 n;(2)现欲将 9095 分数段内的 n 名毕业生随机地分配往 A,B,C 三所学校,每所学校至少分配两名毕业生.若这 n 名毕业生中甲、乙两人必须进同一所学校,共有多少种不同的分配方法?若这 n 名毕业生中恰有两名女生,设随机变量 表示 n 名毕业生中分配往 B 学校的两名毕业生中女生的人数,求 的分布列和数学。
5、函数与导数热点问题(解题指导)三年考情分析热点预测 真题印证 核心素养导数与函数的性质2017,21;2018,21;2017,21;2018,21数学运算、逻辑推理导数与函数的零点 2018,21(2) ;2018江苏,19 数学运算、直观想象导数在不等式中的应用2017,21;2017,21;2016,20;2018,21数学运算、逻辑推理审题答题指引1.教材与高考对接导数在不等式中的应用【题根与题源】 (选修 22 P32 习题 1.3B 组第 1 题(3)(4)利用函数的单调性证明下列不等式,并通过函数图象直观验证.(3)ex1x(x0);(4)ln x0).【试题评析】 1.问题源于求曲线 ye x 在(0,1)。
6、函数与导数热点问题(专项训练)1.已知函数 f(x)ln x ax 2x 有两个不同的零点,求实数 a 的取值范围.2.已知函数 f(x)2x 3ax 2bx3 在 x1 和 x2 处取得极值.(1)求 f(x)的表达式和极值;(2)若 f(x)在区间 m,m4上是单调函数,试求 m 的取值范围.3.已知函数 f(x)(ax 2x)e x,其中 e 是自然对数的底数,aR .(1)当 a0 时,解不等式 f(x)0;(2)当 a0 时,求整数 t 的所有值,使方程 f(x)x2 在t,t1上有解.4.(2019合肥一中质检)已知函数 f(x) .x aex(1)若 f(x)在区间 (,2)上为单调递增函数,求实数 a 的取值范围;(2)若 a0,x 00 时,由 ln xax 2。