2019年春人教版八年级下数学18.2.1.2矩形的判定课件

,导入新课,讲授新课,当堂练习,课堂小结,19.2.2 一次函数,第十九章 一次函数,第1课时 一次函数的概念,情境引入,1.理解一次函数的概念,明确一次函数与正比例函数之间的联系; 2.能利用一次函数解决简单的实际问题.(重点、难点),导入新课,问题引入,某登山队大本营所在地的气温为5,海拔每升高

2019年春人教版八年级下数学18.2.1.2矩形的判定课件Tag内容描述:

1、,导入新课,讲授新课,当堂练习,课堂小结,19.2.2 一次函数,第十九章 一次函数,第1课时 一次函数的概念,情境引入,1.理解一次函数的概念,明确一次函数与正比例函数之间的联系; 2.能利用一次函数解决简单的实际问题.(重点、难点),导入新课,问题引入,某登山队大本营所在地的气温为5,海拔每升高1km气温下降6.登山队员由大本营向上登高x km时,他们所在位置的气温是y.,y=5-6x,(1)试用函数解析式表示y与x的关系;,(2)它是正比例函数吗?为什么?,y=5-6x不是正比例函数,正比例函数没有常数项.,讲授新课,问题1 下列问题中,变量之间的对应关系。

2、16.3 二根次式的加减,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第2课时 二次根式的混合运算,1. 掌握二次根式的混合运算的运算法则.(重点) 2.会运用二次根式的混合运算法则进行有关的运算.(难点),导入新课,问题1 单项式与多项式、多项式与多项式的乘法法则法则分别是什么?,问题2 多项式与单项式的除法法则是什么?,m(a+b+c)=ma+mb+mc;,(m+n)(a+b)=ma+mb+na+nb,复习引入,(ma+mb+mc)m=a+b+c,分配律,单多,转化,前面两个问题的思路是:,思考 若把字母a,b,c,m都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了。

3、,导入新课,讲授新课,当堂练习,课堂小结,20.2 数据的波动程度,第二十章 数据的分析,第1课时 方 差,1.理解方差的概念及统计学意义; 2.会计算一组数据的方差; (重点) 3.能够运用方差判断数据的波动程度,并解决简单的实际问题.(难点),2017年我校篮球联赛开始了,导入新课,刘教练,选 我,选 我,刘教练到我班选拔一名篮球队员,刘教练对陈方楷和李霖东两名学生进行5次投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.,(1)请求出以上两组数据的平均数、中位数、众数;,(3)若要选一个投篮稳定的队员,选谁更好?。

4、16.2 二根次式的乘除,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次根式的乘法,1.理解二次根式的乘法法则.(重点) 2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.(难点),导入新课,情景引入,近年来我国探月工程取得了一个又一个的成就,无论是嫦娥探测器还是玉兔月球车,既体现了中华民族传统文化的意味,又契合了我国和平利用太空的意愿,下面一起来观看嫦娥三号发射模拟视频:,问题1 运用运载火箭发射航天行器时,火箭必须达到一定的速度(第一宇宙速度),才能克服地球的引力,从而将飞船送。

5、16.1 二根次式,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次根式的概念,1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是玩技巧,技巧。

6、,导入新课,讲授新课,当堂练习,课堂小结,19.2.1 正比例函数,第十九章 一次函数,第1课时 正比例函数的概念,情境引入,1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数解析式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式: (1)圆的周长l 随半径r的变化而变化 (2)铁的密度为7.8g/cm3,铁块的质。

7、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第2课时 勾股定理的逆定理的应用,1.灵活应用勾股定理及其逆定理解决实际问题.(重点) 2.将实际问题转化成用勾股定理的逆定理解决的数学问题.(难点),导入新课,问题 前面的学习让我们对勾股定理及其逆定理 的知识有了一定的认识,你能说出它们的内容吗?,回顾与思考,a2+b2=c2 (a,b为直角边,c斜边),RtABC,C是直角,勾股定理,勾股定理的逆定理,a2+b2=c2 (a,b为较短边,c为最长边),RtABC,且C是直角.,(2)等腰 ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是 cm.,。

8、17.1 勾股定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理,1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想.(重点) 2.会用勾股定理进行简单的计算 .(难点),其他星球上是否存在着“人”呢?为了探寻这一点,世界上许多科学家向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.,导入新课,情景引入,据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).,很多学者认为如果宇宙“人”也拥有文明的话,那么他们一。

9、18.2.3 正方形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 正方形的性质,1.理解正方形的概念. 2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.(重点、难点) 3.会应用正方形的性质解决相关证明及计算问题.(难点),导入新课,观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,矩 形,问题1:矩形怎样变化后就成了正方形呢?你有什么发现?,问题引入,正方形,问题2 菱形怎样变化后就成了正方形呢?你有什么发现?,正方形,邻边相等,矩。

10、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理的逆定理,1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点) 2.能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.(难点),导入新课,问题1 勾股定理的内容是什么?,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,b,c,a,问题2 求以线段a、b为直角边的直角三角形的斜边c的长:, a3,b4; a2.5,b6; a4,b7.5.,c=5,c=6.5,c=8.5,复习引入,思考 以前我们已经学过了通过。

11、第十九章 一次函数,导入新课,讲授新课,当堂练习,课堂小结,19.1.1 变量与函数,第2课时 函数,情境引入,1.了解函数的相关概念,会判断两个变量是否具有函数关系 2.能根据简单的实际问题写出函数解析式,并确定自变量的取值范围(重点、难点) 3.会根据函数解析式求函数值.,导入新课,视频引入,讲授新课,想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?,情景一,下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.,(1)根据左图填表:,(2)对于给定的时间t ,相应的高度h能确定吗?,11,37,45,37,3,10。

12、,导入新课,讲授新课,当堂练习,课堂小结,19.1.2 函数的图象,第十九章 一次函数,第2课时 函数的表示方法,情境引入,1了解函数的三种表示方法及其优点; 2能用适当的方式表示简单实际问题中的变量之间 的函数关系;(重点) 3能对函数关系进行分析,对变量的变化情况进行 初步讨论.(难点),在计算器上按照下面的程序进行操作:,输入x(任意一个数),按键,2,=,显示y(计算结果),7,11,3,5,207,显示的数y是输入的数x的函数吗?为什么?,填表:,+,5,如果是,写出它的解析式.,y = 2x+5,导入新课,动手操作,讲授新课,用平面直角坐标系中的一个图象来。

13、18.2.2 菱 形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为。

14、18.1.2 平行四边形判定,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 平行四边形的判定(1),1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;(重点) 2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.(难点),两组对边分别平行的四边形叫平行四边形.,问题1 平行四边形的定义是什么?有什么作用?,可以用平行四边形的定义来判定平行四边形,如:,导入新课,复习引入,问题2 除了两组对边分别平行,平行四边形还有哪些性质?,平行四边形的对边。

15、18.1.2 平行四边形判定,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定(2),1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.(重点) 2.会进行平行四边形的性质与判定的综合运用.(难点),数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?,情景引入,导入新课,只要使互相平行的夹在铁轨之间的枕木长相等就可以了,那这是为什么呢?会不会跟我们学过的平行四边形有关呢?,问题 我们知道,两组对分别平。

16、第2课时 矩形的判定 新课导入 工人师傅在做门窗或矩形工人师傅在做门窗或矩形 零件时,要确保图形是矩形。零件时,要确保图形是矩形。 你有什么办法帮工人师傅测一你有什么办法帮工人师傅测一 测吗?测吗? 学习目标 1. 1.能推导归纳判定一个四边形是矩形的几能推导归纳判定一个四边形是矩形的几 种方法种方法. . 2. 2.能选取适当的判定方法判定一个四边形能选取适当的。

17、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.3 正方形,第2课时 正方形的判定,1探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点) 2会运用正方形的判定条件进行有关的论证和计算 .(难点),问题1 什么是正方形?正方形有哪些性质?,A,B,C,D,正方形:有一组邻边相等,并且有一个角是直角的平行四边形. 正方形性质:四个角都是直角; 四条边都相等;对角线相等且互相垂直平分.,O,导入新课,复习引入,问题2 你是如何判断是矩形、菱形?,平行四边形,矩形,菱形,四边形,三个角是直角,四条边相。

18、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.2 菱 形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边。

19、18.2.1 矩 形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 矩形的性质,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形,定。

20、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.1 矩 形,第2课时 矩形的判定,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任。

【2019年春人教版八年级下数】相关PPT文档
标签 > 2019年春人教版八年级下数学18.2.1.2矩形的判定课件[编号:151030]