16.1 二根次式,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次根式的概念,1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你
2019年春人教版八年级下数学17.1.1勾股定理课件Tag内容描述:
1、16.1 二根次式,第十六章 二次根式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 二次根式的概念,1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点),导入新课,情景引入,里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?,你们是根据哪些特征猜出的呢?,下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.,通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?,“数学根本上是玩概念的,不是玩技巧,技巧。
2、,导入新课,讲授新课,当堂练习,课堂小结,19.2.1 正比例函数,第十九章 一次函数,第1课时 正比例函数的概念,情境引入,1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数解析式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式: (1)圆的周长l 随半径r的变化而变化 (2)铁的密度为7.8g/cm3,铁块的质。
3、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.3 正方形,第2课时 正方形的判定,1探索并证明正方形的判定,并了解平行四边形、矩形、菱形之间的联系和区别;(重点、难点) 2会运用正方形的判定条件进行有关的论证和计算 .(难点),问题1 什么是正方形?正方形有哪些性质?,A,B,C,D,正方形:有一组邻边相等,并且有一个角是直角的平行四边形. 正方形性质:四个角都是直角; 四条边都相等;对角线相等且互相垂直平分.,O,导入新课,复习引入,问题2 你是如何判断是矩形、菱形?,平行四边形,矩形,菱形,四边形,三个角是直角,四条边相。
4、18.2.3 正方形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 正方形的性质,1.理解正方形的概念. 2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.(重点、难点) 3.会应用正方形的性质解决相关证明及计算问题.(难点),导入新课,观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.,情景引入,你还能举出其他的例子吗?,讲授新课,矩 形,问题1:矩形怎样变化后就成了正方形呢?你有什么发现?,问题引入,正方形,问题2 菱形怎样变化后就成了正方形呢?你有什么发现?,正方形,邻边相等,矩。
5、,导入新课,讲授新课,当堂练习,课堂小结,19.1.2 函数的图象,第十九章 一次函数,第2课时 函数的表示方法,情境引入,1了解函数的三种表示方法及其优点; 2能用适当的方式表示简单实际问题中的变量之间 的函数关系;(重点) 3能对函数关系进行分析,对变量的变化情况进行 初步讨论.(难点),在计算器上按照下面的程序进行操作:,输入x(任意一个数),按键,2,=,显示y(计算结果),7,11,3,5,207,显示的数y是输入的数x的函数吗?为什么?,填表:,+,5,如果是,写出它的解析式.,y = 2x+5,导入新课,动手操作,讲授新课,用平面直角坐标系中的一个图象来。
6、17.2勾股定理的逆定理,第一课时,第二课时,人教版 数学 八年级 下册,勾股定理的逆定理,第一课时,返回,按照这种做法真能得到一个直角三角形吗?,古埃及人曾用下面的方法得到直角:,用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.,1. 掌握勾股定理逆定理的概念并理解互逆命题、互逆定理的概念、关系及勾股数.,2. 能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.,素养目标,据说,古埃及人曾用如图所示的方法画直角.,勾股定理的逆定。
7、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.2 菱 形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边。
8、第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,18.2.1 矩 形,第2课时 矩形的判定,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任。
9、18.2.2 菱 形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为。
10、18.2.1 矩 形,第十八章 平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 矩形的性质,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形,定。
11、,导入新课,讲授新课,当堂练习,课堂小结,20.2 数据的波动程度,第二十章 数据的分析,第1课时 方 差,1.理解方差的概念及统计学意义; 2.会计算一组数据的方差; (重点) 3.能够运用方差判断数据的波动程度,并解决简单的实际问题.(难点),2017年我校篮球联赛开始了,导入新课,刘教练,选 我,选 我,刘教练到我班选拔一名篮球队员,刘教练对陈方楷和李霖东两名学生进行5次投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.,(1)请求出以上两组数据的平均数、中位数、众数;,(3)若要选一个投篮稳定的队员,选谁更好?。
12、第十七章勾股定理章末复习 复习导入 本章我们学习了什么内容?本章我们学习了什么内容? 那么大家掌握得如何呢?这节课我们一那么大家掌握得如何呢?这节课我们一 起来作一个回顾总结,检阅学习成果起来作一个回顾总结,检阅学习成果. 想一想 勾股定理及勾股定理的逆定理勾股定理及勾股定理的逆定理. . 复习目标 1.复习与回顾本章的重要知识点和知识结构复习与回顾本章的重要知识点和知识结构. 。
13、,第十七章 勾股定理,17.2 勾股定理的逆定理,第十七章 勾股定理,17.2 勾股定理的逆定理,考场对接,考场对接,题型一 识别二次根式,D,D,A,题型二 利用勾股定理的逆定理证明两条直线垂直或求夹角的大小,题型三 利用勾股定理及其逆定理求线段的长,题型六 运用勾股定理解决图形折叠问题,题型四 利用勾股定理及其逆定理求图形的面积,题型五 利用勾股定理的逆定理解决实际问题,题型六 用互逆定理的定义判断一个定理是否有逆定理,谢 谢 观 看!,。
14、第十九章 一次函数,导入新课,讲授新课,当堂练习,课堂小结,19.1.1 变量与函数,第2课时 函数,情境引入,1.了解函数的相关概念,会判断两个变量是否具有函数关系 2.能根据简单的实际问题写出函数解析式,并确定自变量的取值范围(重点、难点) 3.会根据函数解析式求函数值.,导入新课,视频引入,讲授新课,想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?,情景一,下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.,(1)根据左图填表:,(2)对于给定的时间t ,相应的高度h能确定吗?,11,37,45,37,3,10。
15、第十七章 勾股定理 数学活动 新课导入 提问 给你一根较长的绳子和刻度尺,给你一根较长的绳子和刻度尺, 你能测量旗杆的高度吗?你能测量旗杆的高度吗? 给你给你4个全等的直角三角形,你能拼出个全等的直角三角形,你能拼出 不同课本介绍的其他图案,并能证明勾股定不同课本介绍的其他图案,并能证明勾股定 理吗?理吗? 本节活动课,我们就这两个问题一起探本节活动课,我们就这两个问题一起探 讨,看。
16、17.2 勾股定理的逆定理勾股定理的逆定理 第十七章第十七章 勾股定理勾股定理 新课导入 提问 这个命题的条件和结论分别是什么?这个命题的条件和结论分别是什么? 命题命题1 如果直角三角形两直角边长分别为如果直角三角形两直角边长分别为a, b,斜边长为,斜边长为c,那么,那么a2+b2=c2 条件:直角三角形的两直角边长为条件:直角三角形的两直角边长为a,b,斜,斜 边长为边长为c .结论:。
17、17.1 勾股定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第3课时 利用勾股定理作图或计算,1. 会运用勾股定理确定数轴上表示实数的点及解决网格问题.(重点) 2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.(难点),欣赏下面海螺的图片:,导入新课,情景引入,在数学中也有这样一幅美丽的“海螺型”图案, 如第七届国际数学教育大会的会徽.,这个图是怎样绘制出来的呢?,问题1 我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?,3,-2.5,问题2 求。
18、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第2课时 勾股定理的逆定理的应用,1.灵活应用勾股定理及其逆定理解决实际问题.(重点) 2.将实际问题转化成用勾股定理的逆定理解决的数学问题.(难点),导入新课,问题 前面的学习让我们对勾股定理及其逆定理 的知识有了一定的认识,你能说出它们的内容吗?,回顾与思考,a2+b2=c2 (a,b为直角边,c斜边),RtABC,C是直角,勾股定理,勾股定理的逆定理,a2+b2=c2 (a,b为较短边,c为最长边),RtABC,且C是直角.,(2)等腰 ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是 cm.,。
19、17.2 勾股定理的逆定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理的逆定理,1.掌握勾股定理逆定理的概念并理解互逆命题、定理的概念、关系及勾股数.(重点) 2.能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.(难点),导入新课,问题1 勾股定理的内容是什么?,如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.,b,c,a,问题2 求以线段a、b为直角边的直角三角形的斜边c的长:, a3,b4; a2.5,b6; a4,b7.5.,c=5,c=6.5,c=8.5,复习引入,思考 以前我们已经学过了通过。
20、17.1 勾股定理,第十七章 勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第1课时 勾股定理,1.经历勾股定理的探究过程,了解关于勾股定理的一 些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想.(重点) 2.会用勾股定理进行简单的计算 .(难点),其他星球上是否存在着“人”呢?为了探寻这一点,世界上许多科学家向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.,导入新课,情景引入,据说我国著名的数学家华罗庚曾建议“发射”一种勾股定理的图形(如图).,很多学者认为如果宇宙“人”也拥有文明的话,那么他们一。