1.4 角平分线的性质 同步教案湘教版八年级数学下册

平行四边形的边、角的性质教学目标:1理解平行四边形的概念;(重点)2掌握平行四边形边、角的性质;(重点)3利用平行四边形边、角的性质解决问题(难点)教学过程:一、情境导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四

1.4 角平分线的性质 同步教案湘教版八年级数学下册Tag内容描述:

1、平行四边形的边、角的性质教学目标:1理解平行四边形的概念;(重点)2掌握平行四边形边、角的性质;(重点)3利用平行四边形边、角的性质解决问题(难点)教学过程:一、情境导入平行四边形是我们常见的一种图形,它具有十分和谐的对称美它是什么样的对称图形呢?它又具有哪些基本性质呢?二、合作探究探究点一:平行四边形的定义如图,在四边形 ABCD 中, B D,12,求证:四边形 ABCD 是平行四边形解析:根据三角形内角和定理求出 DAC ACB,从而可以推出 AD BC, AB CD,再根据平行四边形的定义即可推出结论证明:1 B ACB180,2 D CAD180, B D。

2、1.1.2 含 30锐角的直角三角形的性质及其应用教学目标:1理解并掌握含 30锐角的直角三角形的性质;(重点)2能利用含 30锐角的直角三角形的性质解决问题(难点)教学过程:一、情境导入用两个全等的含 30角的直角三角尺,你能拼出一个等边三角形吗?说说理由,并把你的发现和大家交流一下二、合作探究探究点一:在直角三角形中,如果有一个锐角等于 30,那么它所对的直角边等于斜边的一半等腰三角形的一个底角为 75,腰长 4cm,那么腰上的高是_cm,这个三角形的面积是_cm 2.解析:因为 75不是特殊角,但是根据“三角形内角和为 180”可知等腰三角。

3、1.1.1 直角三角形的性质和判定教学目标:1掌握“直角三角形两个锐角互余” ,并能利用“两锐角互余”判断三角形是直角三角形;(重点)2探索、理解并掌握“直角三角形斜边上的中线等于斜边的一半”的性质(重点、难点)教学过程:一、情境导入在小学时我们已经学习过有关直角三角形的知识,同学们可以用手上的三角板和量角器作直角三角形,并和小组成员一同探究直角三角形的性质二、合作探究探究点一:直角三角形两锐角互余如图, AB DF, AC BC 于 C, BC 与 DF 交于点 E,若 A20,则 CEF 等于( )A110 B100 C80 D70解析: AC BC 于 C, ABC 是。

4、1.4 角平分线,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 角平分线,北师大版八年级下册数学教学课件,1.会叙述角平分线的性质及判定;(重点) 2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;(难点) 3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力,学习目标,情境引入,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在何处? (比例尺为120000),D,C,S。

5、 北师大版八年级数学下册 1.4 角平分线 同步练习一、单选题(共 10 题;共 20 分)1.如图,OP 平分AOB,PAOA,PB OB,垂足分别为 A,B。下列结论中不一定成立的是( ) A.PA=PB B.PO 平分AOB C.OA=OB D.AB 垂直平分 OP2.如图,AB CD,AP,CP 分别平分 BAC 和ACD,PE AC 于点 E,且 PE3cm ,则 AB 与 CD 之间的距离为( ) A.3 cm B.6 cm C.9 cm D.无法确定3.如图,以AOB 的顶点 O 为圆心,适当长为半径画弧,交 OA 于点 C,交 OB 于点 D,再分别以点 C,D为圆心,大于 CD 的长为半径画弧,两弧在AOB 内部交于点 E,作射线 OE,连接 CD,以下说。

6、角平分线的性质的综合应用知识点 角平分线性质的综合应用1如图 1417,OP 平分AOB,PAOA,PBOB,垂足分别为 A,B.下列判断错误的是( )图 1417APAPB BPO 平分APBCOAOB DAB 垂直平分 OP2.如图 1418,OP 是AOB 的平分线,点 P 到 OA 的距离 PE3,N 是 OB 上的任意一点,则线段 PN 的取值范围为( )图 1418APN3 CPN3 DPN33教材“动脑筋”变式 如图 1419,已知 ABCD,BP 和 CP 分别平分ABC 和DCB,AD 过点 P,且与 AB 垂直,PEBC 于点 E,若 PE4,则 AD 的长为( )图 1419A8 B6 C4 D24.如图 1420,AD 是ABC 中BAC 的平分线,DEAB 于点 E,SABC7,D。

7、角平分线的性质【基础练习】知识点 1 角平分线的性质定理12017台州 如图 141,P 是AOB 的平分线 OC 上一点,PDOB,垂足为 D.若PD2,则点 P 到边 OA 的距离是( )图 141A2 B3 C. D432如图 142,OP 为AOB 的平分线,PCOA,PDOB,垂足分别是 C,D,则下列结论错误的是( )图 142APCPD BCPDDOP CCPODPO DOCOD3如图 143,在ABC 中,ABC,ACB 的平分线交于点 O,ODAB 于点 D,OEAC于点 E,则 OD 与 OE 的大小关系是( )图 143AODOE BODOE CODOE D不能确定4如图 144 所示,在ABC 中,A90,BD 是ABC 的角平分线,DEBC,垂足是E,AC11 cm,CD7 cm,则 。

8、,第1章 直角三角形,1.4 角平分线的性质,第1章 直角三角形,1.4 角平分线的性质,考场对接,例题1 如 图 1 - 4 - 8 所 示 , AD是ABC的角平分线, DE, DF 分别是 ABD和 A C D 的 高 . 求证:AE=AF.,题型一 运用角平分线的性质定理证明线段相等,考场对接,例题2 如图1-4-9, BD是ABC的平分线, AB=BC, 点P在BD上, PMAD, PNCD, 垂足分别是 M, N试说明PM=PN.,分析 根据角平分线的定义, 可得ABD= CBD, 然后利用“SAS” 证明ABD 和CBD全 等, 再根据全等三角形的对应角相等, 可得ADB= CDB, 然后根据角平分线上的点到角的两边的距离 相等即可证明.,锦囊妙。

9、1课时作业(七)1.4 第 1课时 角平分线的性质 一、选择题12017台州如图 K71,P 是AOB 平分线 OC上一点,PDOB,垂足为 D.若PD2,则点 P到边 OA的距离是( )图 K71A2 B3 C. D432如图 K72,若 DEAB 于点 E,DFAC 于点 F,则对于1 和2 的大小关系,下列说法正确的是( )图 K72A一定相等 B一定不相等C当 BDCD 时相等 D当 DEDF 时相等3如图 K73,在 CD上求一点 P,使它到 OA,OB 的距离相等,则 P是( )图 K73A线段 CD的中点 BOA 与 OB的中垂线的交点 COA 与 CD的中垂线的交点 DCD 与AOB 的平分线的交点4如图 K74,OP 平分AOB,PAOA,PBOB,垂足分别。

10、第1章 直角三角形,1.4 角平分线的性质,第1课时 角平分线的性质,目标突破,总结反思,第1章 直角三角形,知识目标,1.4 角平分线的性质,知识目标,1结合角平分线的概念,以测量的形式,得出角平分线的性质定理并对角平分线的性质定理加以综合应用 2从命题的条件与结论的逆反角度,通过验证,推导出角平分线的性质定理的逆定理并加以应用,目标突破,目标一 能利用角平分线的性质定理解题,例1 教材补充例题 操作测量:如图141,OC是AOB的平分线,P是射线OC上的任意一点,取三个不同位置的点P,分别过点P作PDOA,PEOB,D,E为垂足,测量PD,PE的长,。

11、14 角平分线的性质教学目标:1理解并掌握角平分线的性质及判定;(重点)2能够对角平分线的性质及判定进行简单应用(难点)教学过程:一、情境导入在 S 区有一个集贸市场 P,它建在公路与铁路所成角的平分线上,要从 P 点建两条路,一条到公路,一条到铁路问题 1:怎样修建道路最短?问题 2:往哪条路走更近呢?二、合作探究探究点一:角平分线上的点到角两边的距离相等【类型一】 利用角平分线的性质求线段长如图,在 ABC 中, C90, AC BC, BAC 的平分线 AD 交 BC 于 D, DE AB 于E,若 AB7cm,则 DBE 的周长是_解析:在 ABC 中, C90, AC B。

【1.4 角平分线的性质 同步教】相关PPT文档
【1.4 角平分线的性质 同步教】相关DOC文档
标签 > 1.4 角平分线的性质 同步教案湘教版八年级数学下册[编号:118793]