1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第3课时 等腰三角形的判定与反证法,北师大版八年级下册数学教学课件,1.掌握等腰三角形的判定定理及其运用;(重点、难点) 2.理解并掌握反证法的思想,能够运用反证法进行证明;(重点),学习目标,复习引入,导入新课,问题
北师大版八年级下册数学1.4 第1课时 角平分线的性质课件Tag内容描述:
1、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第3课时 等腰三角形的判定与反证法,北师大版八年级下册数学教学课件,1.掌握等腰三角形的判定定理及其运用;(重点、难点) 2.理解并掌握反证法的思想,能够运用反证法进行证明;(重点),学习目标,复习引入,导入新课,问题1:等腰三角形有哪些性质定理及推论?,等腰三角形的两底角相等(简写成 等边对等角”),等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合(简写成 三线合一”),问题2:等腰三角形的“等边对等角”的题设和结论分别是什么?,题设:一。
2、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第4课时 等边三角形的判定及含30角的 直角三角形的性质,北师大版八年级下册数学教学课件,1.能用所学的知识证明等边三角形的判定定理.(重点) 2.掌握含30角的直角三角形的性质并解决有关问题.(难点),导入新课,观察与思考,观察下面图片,说说它们都是由什么图形组成的?,思考:上节课我们学习了等腰三角形的判定定理,那等边三角形的判定定理是什么呢?,一个三角形满足什么条件就是等边三角形?,由等腰三角形的判定定理,可得等边三角形的两个判定定理:,1.三个角都。
3、2.6 一元一次不等式组,导入新课,讲授新课,当堂练习,课堂小结,第1课时 一元一次不等式组的解法(1),北师大版八年级下册数学教学课件,1.通过具体操作,在解一元一次不等式组的过程中形成正确的解不等式的思路与方法;(重点、难点) 2.掌握将一元一次不等式组的解集在数轴上正确的表示.,学习目标,导入新课,同学们,你能根据上图对话片断估计出这头大象的体重范围吗?请说说你的理由!,若设大象的体重为x吨,请用不等式的知识分别表示上面两位同学所谈话的内容:,情境引入,问题:一个长方形足球场的宽为70m,如果它的周长大于350m,面积小于7630m2。
4、2.4 一元一次不等式,导入新课,讲授新课,当堂练习,课堂小结,第1课时 一元一次不等式的解法,北师大版八年级下册数学教学课件,1.理解和掌握一元一次不等式概念的含义; 2.会用不等式的性质熟练地解一元一次不等式 (重点、难点),学习目标,趣味阅读,有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.,鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法.,导入新课,复习引入,1.什么叫一元一次方程 ?,答:“只含一个未知数、并且未。
5、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第2课时 等边三角形的性质,北师大版八年级下册数学教学课件,学习目标,1.进一步学习等腰三角形的相关性质,了解等腰三角 形两底角的角平分线(两腰上的高,中线)的性质; 2.学习等边三角形的性质,并能够运用其解决问 题.(重点、难点),在七下我们已经知道了“三边相等的三角形是等边三角形”,生活中有很多等边三角形,如交通图标、台球室的三角架等,它们都是等边三角形.,思考:在上一节课我们证明等腰三角形的两底角相等,那等边三角形的各角之间有什么关系呢?。
6、第五章 分 式,导入新课,讲授新课,当堂练习,课堂小结,5.1 认识分式,第2课时 分式的基本性质,北师大版八年级下册数学教学课件,1.理解并掌握分式的基本性质(重点) 2.会运用分式的基本性质进行分式的约分和通分(难点),导入新课,情境引入,分数的 基本性质,分数的分子与分母同时乘以(或除以)一个不等于零的数,分数的值不变.,2.这些分数相等的依据是什么?,1.把3个苹果平均分给6个同学,每个同学得到几个苹果?,讲授新课,思考:下列两式成立吗?为什么?,分数的分子与分母同时乘以(或除以)一个不等于0的数,分数的值不变.,分数的基本性。
7、1.1 等腰三角形,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 三角形的全等和等腰三角形的性质,北师大版八年级下册数学教学课件,学习目标,1.回顾全等三角形的判定和性质; 2.理解并掌握等腰三角形的性质及其推论,能运用 其解决基本的几何问题.(重点),导入新课,情境引入,问题1:图中有些你熟悉的图形吗?它们有什么共同特点?,斜拉桥梁,埃及金字塔,体育观看台架,问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中反映了什。
8、3.2 图形的旋转,导入新课,讲授新课,当堂练习,课堂小结,第1课时 旋转的定义和性质,第三章 图形的平移与旋转,北师大版八年级下册数学教学课件,学习目标,1.掌握旋转的有关概念及基本性质.(重点) 2.能够根据旋转的基本性质解决实际问题.,导入新课,情境引入,这些运动有什么共同的特点?,讲授新课,观察与思考,B,O,A,问题 观察下列图形的运动,它有什么特点?,钟表的指针在不停地转动,从12时到4时,时针转动了_度.,120,把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.,思考:怎样来定义这种图形变换?,风车风轮的每个叶片在风的吹。
9、3 简单的轴对称图形,导入新课,讲授新课,当堂练习,课堂小结,第五章 生活中的轴对称,第3课时 角平分线的性质,北师大版七年级数学下教学课件,1.通过操作、验证等方式,探究并掌握角平分 线的性质定理.(难点) 2.能运用角的平分线性质解决简单的几何问题. (重点),挑战第一关 情境引入,问题1:在纸上画一个角,你能得到这个角的平分 线吗?,导入新课,用量角器度量,也可用折纸的方法,问题2:如果把前面的纸片换成木板、钢板等,还能用对折的方法得到木板、钢板的角平分线吗?,提炼图形,问题3:如图,是一个角平分仪,其中AB=AD,BC= DC.将点A。
10、1课时作业(七)1.4 第 1课时 角平分线的性质 一、选择题12017台州如图 K71,P 是AOB 平分线 OC上一点,PDOB,垂足为 D.若PD2,则点 P到边 OA的距离是( )图 K71A2 B3 C. D432如图 K72,若 DEAB 于点 E,DFAC 于点 F,则对于1 和2 的大小关系,下列说法正确的是( )图 K72A一定相等 B一定不相等C当 BDCD 时相等 D当 DEDF 时相等3如图 K73,在 CD上求一点 P,使它到 OA,OB 的距离相等,则 P是( )图 K73A线段 CD的中点 BOA 与 OB的中垂线的交点 COA 与 CD的中垂线的交点 DCD 与AOB 的平分线的交点4如图 K74,OP 平分AOB,PAOA,PBOB,垂足分别。
11、第1章 直角三角形,1.4 角平分线的性质,第1课时 角平分线的性质,目标突破,总结反思,第1章 直角三角形,知识目标,1.4 角平分线的性质,知识目标,1结合角平分线的概念,以测量的形式,得出角平分线的性质定理并对角平分线的性质定理加以综合应用 2从命题的条件与结论的逆反角度,通过验证,推导出角平分线的性质定理的逆定理并加以应用,目标突破,目标一 能利用角平分线的性质定理解题,例1 教材补充例题 操作测量:如图141,OC是AOB的平分线,P是射线OC上的任意一点,取三个不同位置的点P,分别过点P作PDOA,PEOB,D,E为垂足,测量PD,PE的长,。
12、1.4 角平分线,第一章 三角形的证明,导入新课,讲授新课,当堂练习,课堂小结,第1课时 角平分线,北师大版八年级下册数学教学课件,1.会叙述角平分线的性质及判定;(重点) 2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;(难点) 3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力,学习目标,情境引入,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在何处? (比例尺为120000),D,C,S。