北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件

上传人:狮*** 文档编号:136760 上传时间:2020-05-03 格式:PPTX 页数:28 大小:1.16MB
下载 相关 举报
北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件_第1页
第1页 / 共28页
北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件_第2页
第2页 / 共28页
北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件_第3页
第3页 / 共28页
北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件_第4页
第4页 / 共28页
北师大版八年级下册数学《4.3 第2课时 完全平方公式》课件_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、4.3 公式法,导入新课,讲授新课,当堂练习,课堂小结,第四章 因式分解,第2课时 完全平方公式,北师大版八年级下册数学教学课件,1.理解并掌握用完全平方公式分解因式(重点) 2.灵活应用各种方法分解因式,并能利用因式分解 进行计算(难点),导入新课,复习引入,1.因式分解:,把一个多项式转化为几个整式的积的形式.,2.我们已经学过哪些因式分解的方法?,1.提公因式法,2.平方差公式,a2-b2=(a+b)(a-b),讲授新课,你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?,同学们拼出图形为:,这个大正方形的面积可以怎么求?,(a+b)2,a2+2ab+b2,=,将上面的等式倒过

2、来看,能得到:,a2+2ab+b2,a22ab+b2,我们把a+2ab+b和a-2ab+b这样的式子叫作完全平方式.,观察这两个式子:,(1)每个多项式有几项?,(3)中间项和第一项,第三项有什么关系?,(2)每个多项式的第一项和第三项有什么特征?,三项,这两项都是数或式的平方,并且符号相同,是第一项和第三项底数的积的2倍,完全平方式的特点: 1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的2倍.,完全平方式:,简记口诀: 首平方,尾平方,首尾两倍在中央.,凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.,+b2,=

3、(a b),a2,首2,+尾2,2首尾,(首尾)2,两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.,3.a+4ab+4b=( )+2 ( ) ( )+( )=( ),2.m-6m+9=( ) - 2 ( ) ( )+( ) =( ),1. x+4x+4= ( ) +2( )( )+( ) =( ),x,2,x + 2,a,a 2b,a + 2b,2b,对照 a2ab+b=(ab),填空:,m,m - 3,3,x,2,m,3,下列各式是不是完全平方式? (1)a24a+4; (2)1+4a; (3)4b2+4b-1; (4)a2+ab+b2; (5)x2+x+0

4、.25.,是,(2)因为它只有两项;,不是,(3)4b与-1的符号不统一;,不是,分析:,不是,是,(4)因为ab不是a与b的积的2倍.,例1 如果x2-6x+N是一个完全平方式,那么N是( ) A . 11 B. 9 C. -11 D. -9,B,解析:根据完全平方式的特征,中间项-6x=2x(-3),故可知N=(-3)2=9.,变式训练 如果x2-mx+16是一个完全平方式,那么m的值为_.,解析:16=(4)2,故-m=2(4),m=8.,8,典例精析,方法总结:本题要熟练掌握完全平方公式的结构特征, 根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程

5、中,要注意积的2倍的符号,避免漏解,例2 分解因式: (1)16x2+24x+9; (2)-x2+4xy-4y2.,分析:(1)中, 16x2=(4x)2, 9=3,24x=24x3, 所以16x2+24x +9是一个完全平方式,即16x2 + 24x +9= (4x)2+ 24x3 + (3)2.,+b2,a2,(2)中首项有负号,一般先利用添括号法则,将其变形为-(x2-4xy +4y2),然后再利用公式分解因式.,解: (1)16x2+ 24x +9,= (4x + 3)2;,= (4x)2 + 24x3 + (3)2,(2)-x2+ 4xy-4y2,=-(x2-4xy+4y2),=-(

6、x-2y)2.,例3 把下列各式分解因式: (1)3ax2+6axy+3ay2 ;(2)(a+b)2-12(a+b)+36.,解: (1)原式=3a(x2+2xy+y2) =3a(x+y)2;,分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;,(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36.,(2)原式=(a+b)2-2(a+b) 6+62 =(a+b-6)2.,利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.,概念学习,因式分解: (1)3a2x224a2x48a2; (2)(a24)216a2.,

7、针对训练,(a244a)(a244a),解:(1)原式3a2(x28x16),3a2(x4)2;,(2)原式(a24)2(4a)2,(a2)2(a2)2.,例4 把下列完全平方公式分解因式: (1)1002210099+99; (2)3423432162.,解:(1)原式=(10099),(2)原式(3416)2,=1.,2500.,例5 已知x24xy210y290,求x2y22xy1的值,112121.,解:x24xy210y290,,(x2)2(y5)20.,(x2)20,(y5)20,,x20,y50,,x2,y5,,x2y22xy1(xy1)2,方法总结:此类问题一般情况是通过配方将

8、原式转化为非负数的和的形式,然后利用非负数性质解答问题,例6 已知a,b,c分别是ABC三边的长,且a22b2c22b(ac)0,请判断ABC的形状,并说明理由,ABC是等边三角形,解:由a22b2c22b(ac)0,得 a22abb2b22bcc20,,即(ab)2(bc)20,,ab0,bc0,abc,,当堂练习,1.下列四个多项式中,能因式分解的是( ) Aa21 Ba26a9 Cx25y Dx25y,2.把多项式4x2y4xy2x3分解因式的结果是( ) A4xy(xy)x3 Bx(x2y)2 Cx(4xy4y2x2) Dx(4xy4y2x2),3.若m2n1,则m24mn4n2的值是

9、_,B,B,1,4.若关于x的多项式x28xm2是完全平方式,则m的值为_ ,4,5.把下列多项式因式分解. (1)x212x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y2+2y+1x2;,(2)原式=2(2a+b) 22(2a+b)1+(1) =(4a+2b 1)2;,解:(1)原式 =x22x6+(6)2 =(x6)2;,(3)原式=(y+1) x =(y+1+x)(y+1x).,(2)原式,6.计算:(1)38.92238.948.948.92.,解:(1)原式(38.948.9)2,100.,7.分解因式:(1)4x24x1;(2) 小聪和小明的解答过程如下:,他

10、们做对了吗?若错误,请你帮忙纠正过来.,x22x3.,(2)原式 (x26x9) (x3)2,解:(1)原式(2x)222x11(2x+1)2,小聪: 小明:,8.(1)已知ab3,求a(a2b)b2的值; (2)已知ab2,ab5,求a3b2a2b2ab3的值,原式25250.,解:(1)原式a22abb2(ab)2.,当ab3时,原式329.,(2)原式ab(a22abb2)ab(ab)2.,当ab2,ab5时,,课堂小结,完全平方公式分解因式,公式,a22ab+b2=(ab)2,特点,(1)要求多项式有三项. (2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2

11、倍,符号可正可负.,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延

12、伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 八年级下册