北师大版八年级下册数学《3.3 中心对称》课件

上传人:狮*** 文档编号:136773 上传时间:2020-05-03 格式:PPTX 页数:36 大小:1.70MB
下载 相关 举报
北师大版八年级下册数学《3.3 中心对称》课件_第1页
第1页 / 共36页
北师大版八年级下册数学《3.3 中心对称》课件_第2页
第2页 / 共36页
北师大版八年级下册数学《3.3 中心对称》课件_第3页
第3页 / 共36页
北师大版八年级下册数学《3.3 中心对称》课件_第4页
第4页 / 共36页
北师大版八年级下册数学《3.3 中心对称》课件_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、3.3 中心对称,导入新课,讲授新课,当堂练习,课堂小结,第三章 图形的平移与旋转,北师大版八年级下册数学教学课件,学习目标,1.理解中心对称的定义及性质,会识别中心对称图形.(重点) 2.会运用掌握中心对称及中心对称图形的性质解决实际问题.(重点),导入新课,1.从A旋转到B,旋转中心 是?旋转角是多少度呢?,o,A,B,C,D,2.从A旋转到C呢?,3.从A旋转到D呢?,情境引入1,魔术时间,桌上有四张牌,将其中一张牌旋转180度后,你很快能猜出是哪一张吗?,情境引入2,讲授新课,重 合,O,A,D,B,C,问题1:观察下列图形的运动,说一说它们有什么共同点.,观察与思考,旋转角为180,

2、如果把一个图形(如ABO)绕定点O旋转180,它能够与另一个图形(如CDO)重合,那么就说这两个图形ABO与图形CDO关于点O的对称或中心对称,点O就是对称中心.,填一填: 如图,OCD与OAB关于点O中心对称 ,则_是对称中心,点A与_是对称点, 点B与_是对称点.,O,C,D,1.中心对称是一种特殊的旋转.其旋转角是180 .,2.中心对称是两个图形之间一种特殊的位置关系.,归纳总结,问题2 如图,旋转三角尺,画出ABC关于点O中心对称的ABC .,A,C,A,B,B,C,找一找:,下图中ABC与ABC关于点O是成中心对称,你能从图中找到哪些等量关系?,(1) OA=OA、OB=OB、 O

3、C=OC,(2)ABCABC,1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线),2.中心对称的两个图形是全等形.,知识要点,中心对称的性质,典例精析,例1 如图,已知四边形ABCD和点O,试画出四边形ABCD关于点O成中心对称的图形ABCD.,分析:要画出四边形ABCD关于点O成中心对称的图形,只要画出A,B,C,D四点关于点O的对称点,再顺次连接各对应点即可.,作法:,1.连接AO并延长到A,使OA=OA,得到点A的对应点A;,2.同理,可作出点B,C,D的对应点B,C,D;,3.顺次连接A,B,C,D,则四边形ABCD即为所作.,考考

4、你:如图,已知ABC与ABC中心对称,找出它们的对称中心O.,解法1:根据观察,B、B应是对应点,连接BB,用刻度尺找出BB的中点O,则点O即为所求(如图).,O,O,解法2:根据观察,B、B及C、C应是两组对应点,连接BB、CC,BB、CC相交于点O,则点O即为所求(如图).,注意:如果限制只用直尺作图,我们用解法2.,例2 如图,已知AOB与DOC成中心对称,AOB的面积是12,AB3,则DOC中CD边上的高为_.,解析:设AB边上的高为h,因为AOB的面积是12,AB3,易得h8. 又因为AOB与DOC成中心对称,CODAOB,所以DOC中CD边上的高是8.,8,轴 对 称,中心对称,1

5、,2,3,翻转后和另一个图形重合,旋转后和另一个图形重合,1,拓展提升,中心对称与轴对称的异同,合作探究,(1)线段,(2)平行四边形,A,B,问题 将下面的图形绕O点旋转,你有什么发现?,O,共同点:,(1)都绕一点旋转了180度;,(2)都与原图形完全重合.,把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.,O,B,A,C,D,中心对称图形的定义,知识要点,(1),(2),(3),(4),判一判:下列图形中哪些是中心对称图形?,在生活中,有许多中心对称图形,你能举出一些例子吗?,例3 如图,矩形ABCD的对角线AC和B

6、D相交于点O,过点O的直线分别交AD和BC于点E、F,AB2,BC3,则图中阴影部分的面积为_.,解析:由于矩形是中心对称图形,所以依题意可知BOF与DOE关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角ADC中,易得阴影部分的面积为3,3,例4 请你用无刻度的直尺画一条直线把他们分成面积相等的两部分,你怎样画?,割法1,割法2,补法,图(1),图(2),解密魔术,当堂练习,1.判断正误: (1)轴对称的两个图形一定是全等形,但全等的两个图形不一定是轴对称的图形.( ) (2)成中心对称的两个图形一定是全等形.但全等的两个图形不一定是成中心对称的图形. ( ) (3)全等的两个

7、图形,不是成中心对称的图形,就是成轴对称的图形. ( ),2.如下所示的4组图形中,左边数字与右边数字成中心对称的有 ( ) A.1组 B.2组 C.3组 D.4组,D,3.如图,已知AOB与DOC成中心对称,AOB的面积 是6,AB3,则DOC中CD边上的高是( ) A.2 B.4 C.6 D.8,B,4.下列图形中既是轴对称图形又是中心对称图形的是 ( ) A . 角 B. 等边三角形 C . 线段 D . 平行四边形,C,5.下列图形中是中心对称图形而不是轴对称图形的是 ( ) A . 平行四边形 B. 矩形 C . 菱形 D . 正方形,A,6.世界上因为有了圆的图案,万物才显得富有生

8、机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有 轴对称和中心对称性.,请问以下三个图形中是轴对称图形的有 ,是中心对称图形的有 .,7.图中网格中有一个四边形和两个三角形, (1)请你先画出三个图形关于点O的中心对称图形;,(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度与自身重合?,O,A,B,C,8.如图,已知等边三角形ABC和点O,画ABC,使ABC和ABC关于点O成中心对称.,课堂小结,中心对称和 中心对称图形,概念,旋转角是180,性质,对应点的连线经过对称中心,且被对称中心平分,作图,应

9、用1:作中心对称图形; 应用2:找出对称中心.,中心对称,中心对称图形,定义,性质,应用,绕着内部一点旋转180能与本身重合的图形,经过对称中心的直线把原图形分成面积相等的两部分,美丽的中心对称图形在建筑物和工艺品等领域非常常见,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”

10、力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 八年级下册