浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)

上传人:可** 文档编号:107336 上传时间:2019-12-13 格式:DOCX 页数:8 大小:135.91KB
下载 相关 举报
浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)_第1页
第1页 / 共8页
浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)_第2页
第2页 / 共8页
浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)_第3页
第3页 / 共8页
浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)_第4页
第4页 / 共8页
浙江专用2020版高考数学大一轮复习 第三章导数及其应用 第2讲 导数在研究函数中的应用 第1课时导数与函数的单调性练习(含解析)_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、第1课时 导数与函数的单调性基础达标1函数f(x)exex,xR的单调递增区间是()A(0,)B(,0) C(,1)D(1,)解析:选D.由题意知,f(x)exe,令f(x)0,解得x1,故选D.2函数f(x)1xsin x在(0,2)上的单调情况是()A增函数B减函数C先增后减D先减后增解析:选A.在(0,2)上有f(x)1cos x0恒成立,所以f(x)在(0,2)上单调递增3(2019台州市高三期末质量评估)已知函数f(x)ax3ax2x(aR),下列选项中不可能是函数f(x)图象的是()解析:选D.因f(x)ax2ax1,故当a0时,判别式a24a0,其图象是答案C中的那种情形;当a0

2、时,判别式a24a0,其图象是答案B中的那种情形;判别式a24a0,其图象是答案A中的那种情形;当a0,即yx也是答案A中的那种情形,应选答案D.4已知函数f(x)xsin x,xR,则f,f(1),f的大小关系为()Aff(1)fBf(1)ffCff(1)fDfff(1)解析:选A.因为f(x)xsin x,所以f(x)(x)sin(x)xsin xf(x)所以函数f(x)是偶函数,所以ff.又x时,得f(x)sin xxcos x0,所以此时函数是增函数所以ff(1)f(1)f,故选A.5函数f(x)的定义域为R.f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为()A(1,1)

3、B(1,)C(,1)D(,)解析:选B.由f(x)2x4,得f(x)2x40.设F(x)f(x)2x4,则F(x)f(x)2.因为f(x)2,所以F(x)0在R上恒成立,所以F(x)在R上单调递增,而F(1)f(1)2(1)42240,故不等式f(x)2x40等价于F(x)F(1),所以x1,选B.6(2019温州七校联考)对于R上可导的任意函数f(x),若满足(x3)f(x)0,则必有()Af(0)f(6)2f(3)Bf(0)f(6)2f(3)Cf(0)f(6)2f(3)Df(0)f(6)2f(3)解析:选A.由题意知,当x3时,f(x)0,所以函数f(x)在3,)上单调递减或为常数函数;当

4、x3时,f(x)0,所以函数f(x)在(,3)上单调递增或为常数函数,所以f(0)f(3),f(6)f(3),所以f(0)f(6)2f(3),故选A.7函数f(x)(x3)ex的单调递增区间是_解析:因为f(x)(x3)ex,则f(x)ex(x2),令f(x)0,得x2,所以f(x)的单调递增区间为(2,)答案:(2,)8已知函数f(x)axln x,则当a0时,f(x)的单调递增区间是_,单调递减区间是_解析:由已知得f(x)的定义域为(0,)因为f(x)a,所以当x时f(x)0,当0x时f(x)0,所以f(x)的单调递增区间为,单调递减区间为.答案:9若函数f(x)ax33x2x恰好有三个

5、单调区间,则实数a的取值范围是_解析:由题意知f(x)3ax26x1,由函数f(x)恰好有三个单调区间,得f(x)有两个不相等的零点,所以3ax26x10需满足a0,且3612a0,解得a3,所以实数a的取值范围是(3,0)(0,)答案:(3,0)(0,)10(2019浙江省名校协作体高三联考)已知函数f(x)x2ex,若f(x)在t,t1上不单调,则实数t的取值范围是_解析:由题意得,f(x)ex(x22x),所以f(x)在(,2),(0,)上单调递增,在(2,0)上单调递减,又因为f(x)在t,t1上不单调,所以或,即实数t的取值范围是(3,2)(1,0)答案:(3,2)(1,0)11已知

6、函数f(x)ln x,其中aR,且曲线yf(x)在点(1,f(1)处的切线垂直于直线yx.(1)求a的值;(2)求函数f(x)的单调区间解:(1)对f(x)求导得f(x),由f(x)在点(1,f(1)处的切线垂直于直线yx,知f(1)a2,解得a.(2)由(1)知f(x)ln x,则f(x).令f(x)0,解得x1或x5.因为x1不在f(x)的定义域(0,)内,故舍去当x(0,5)时,f(x)0,故f(x)在(5,)内为增函数故函数f(x)的单调递增区间为(5,),单调递减区间为(0,5)12(1)设函数f(x)xe2xex,求f(x)的单调区间(2)设f(x)ex(ln xa)(e是自然对数

7、的底数,e2.718 28),若函数f(x)在区间上单调递减,求a的取值范围解:(1)因为f(x)xe2xex.由f(x)e2x(1xex1)及e2x0知,f(x)与1xex1同号令g(x)1xex1,则g(x)1ex1.所以当x(,1)时,g(x)0,g(x)在区间(,1)上单调递减;当x(1,)时,g(x)0,g(x)在区间(1,)上单调递增故g(1)1是g(x)在区间(,)上的最小值,从而g(x)0,x(,)综上可知,f(x)0,x(,),故f(x)的单调递增区间为(,)(2)由题意可得f(x)ex0在上恒成立因为ex0,所以只需ln xa0,即aln x在上恒成立令g(x)ln x.因

8、为g(x),由g(x)0,得x1.x(1,e)g(x)g(x)gln ee1,g(e)1,因为e11,所以g(x)maxge1.故ae1.能力提升1(2019丽水模拟)已知函数yxf(x)的图象如图所示(其中f(x)是函数f(x)的导函数)则下面四个图象中,yf(x)的图象大致是()解析:选C.由条件可知当0x1时,xf(x)0,所以f(x)0,函数递减当x1时,xf(x)0,所以f(x)0,函数递增,所以当x1时,函数取得极小值当x1时,xf(x)0,所以f(x)0,函数递增,当1x0时,xf(x)0,所以f(x)0,函数递减,所以当x1时,函数取得极大值符合条件的只有C项2(2019浙江新

9、高考冲刺卷)已知定义在R上的偶函数f(x),其导函数f(x)当x0时,恒有f(x)f(x)0,若g(x)x2f(x),则不等式g(x)g(12x)的解集为()A(,1)B(,)(1,)C(,)D(,)解析:选A.因为定义在R上的偶函数f(x),所以f(x)f(x)因为x0时,恒有f(x)f(x)0,所以x2f(x)2xf(x)0,因为g(x)x2f(x),所以g(x)2xf(x)x2f(x)0,所以g(x)在0,)上为减函数,因为f(x)为偶函数,所以g(x)为偶函数,所以g(x)在(,0)上为增函数,因为g(x)g(12x)所以|x|12x|,即(x1)(3x1)0解得x1,选A.3.已知定

10、义在R上的函数f(x)满足f(3)f(5)1,f(x)为f(x)的导函数,且导函数yf(x)的图象如图所示,则不等式f(x)1的解集是_解析:依题意得,当x0时,f(x)0,f(x)是增函数;当x0时,f(x)0,f(x)是减函数又f(3)f(5)1,因此不等式f(x)1的解集是(3,5)答案:(3,5)4(2019绍兴、诸暨高考模拟)已知函数f(x)x33x,函数f(x)的图象在x0处的切线方程是_;函数f(x)在区间0,2内的值域是_解析:函数f(x)x33x,切点坐标(0,0),导数为y3x23,切线的斜率为3,所以切线方程为y3x;3x230,可得x1,x(1,1),y0,函数是减函数

11、,x(1,),y0函数是增函数,f(0)0,f(1)2,f(2)862,函数f(x)在区间0,2内的值域是2,2答案:y3x2,25已知函数g(x)x3ax22x.(1)若g(x)在(2,1)内为减函数,求实数a的取值范围;(2)若g(x)在区间(2,1)内不单调,求实数a的取值范围解:(1)因为g(x)x2ax2,且g(x)在(2,1)内为减函数,所以g(x)0,即x2ax20在(2,1)内恒成立,所以即解之得a3,即实数a的取值范围为(,3(2)因为g(x)在(2,1)内不单调,g(x)x2ax2,所以g(2)g(1)0或由g(2)g(1)0,得(62a)(3a)0,无解由得即解之得3a0,函数f(x)在(0,)上单调递增;当a0时,令g(x)ax2(2a2)xa,(2a2)24a24(2a1)当a时,0,f(x)0,函数f(x)在(0,)上单调递减当a时,0,g(x)0,f(x)0,函数f(x)在(0,)上单调递减当a0,设x1,x2(x10,所以当x(0,x1)时,g(x)0,f(x)0,f(x)0,函数f(x)单调递增,当x(x2,)时,g(x)0,f(x)0,函数f(x)单调递减综上可得:当a0时,函数f(x)在(0,)上单调递增;当a时,函数f(x)在(0,)上单调递减;当a0时,f(x)在,上单调递减,在上单调递增8

展开阅读全文
相关资源
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)
  • 相关搜索
    资源标签

    当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习