指数函数、对数函数和幂函数

章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)12log63log6等于()A0B1C6Dlog6答案B解析原式2log623log63log661.2函数y的定义域是()A(,2)B(2,)C(23)(3,章末复习课网络构建核心归纳1指数和

指数函数、对数函数和幂函数Tag内容描述:

1、章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)12log63log6等于()A0B1C6Dlog6答案B解析原式2log623log63log661.2函数y的定义域是()A(,2) B(2,)C(2,3)(3,) D(2,4)(4,)答案C解析利用函数有意义的条件直接运算求解由得x2且x3,故选C.3下列函数中,既是偶函数又在区间(0,)上单调递减的是()AyByexCyx21Dylg|x|答案C解析A项,y是奇函数,故不正确;B项,yex为非奇非偶函数,故不正确;C、D两项中的两个函数都是偶函数,且yx21在(0,)上是减函数,ylg|x|在(0,)上是增函数,故选C.4.已知函数f。

2、章末复习课网络构建核心归纳1指数和对数(1)分数指数的定义:a(a0,m,nN,m2),a(a0,m,nN,m2)(2)如同减法是加法的逆运算,除法是乘法的逆运算一样,对数运算是指数运算的逆运算abNlogaNb(a0,a1,N0)由此可得到对数恒等式:alogaNN,blogaab.(3)对数换底公式logaN(a0,b0,a1,b1,N0)的意义在于把各个不同底数的对数换成相同底数的对数,这样,一可以进行换算,二可以通过对数表求值(4)指数和对数的运算法则有:amanamn,logaMlogaNloga(MN),(am)namn,logaMnnlogaM,amanamn,logaMlogaNloga.(aR,m,nR)(M,NR,a0,a1)2指数函数、。

3、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1化简的结果是()A29 B92 C1 D1答案C解析(4)(5)1.2给定函数y;y(x1);y|x1|;y2x1,其中在区间(0,1)上单调递减的函数序号是()A B C D答案B解析y在定义域上是增函数,y(x1)在定义域上是减函数,y|x1|所以在区间(,1)上单调递减,y2x1在定义域上是增函数,故在区间(0,1)上单调递减的函数是y(x1),y|x1|,故选B.3已知集合Ax|ylg(2x)lg x,By|y2x,x0,R是实数集,则(RB)A等于()A0,1 B(0,1C(,0 D以上都不对答案B解析由得0x2,故Ax|0x2,由x0,得2x1。

4、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1(2018广东中山纪念中学期末)若a2或xN BM NCMN DMN答案A解析MN2a(a2)(a1)(a3)(2。

5、章末检测试卷(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1已知f(3x)4xlog2x,那么f的值是_答案2解析令3x,得x.故f4log22.2已知在x克a%的盐水中,加入y克b%(ab)的盐水,浓度变为c%,将y表示成x的函数关系式为_答案yx解析根据配制前后溶质不变,有等式a%xb%yc%(xy),即axbycxcy,故yx.3函数f(x)log5(2x1)的单调增区间是_答案解析函数f(x)的定义域为,令t2x1(t0)因为ylog5t在t(0,)上为单调增函数,t2x1在上为单调增函数,所以函数ylog5(2x1)的单调增区间为.4若f(x)则f(x)的值域为_答案(2,1解析当x(,1时。

6、章末检测(三)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,把答案填在题中的横线上)1.已知点(3,1)和点(4,6)在直线3x2ya0的两侧,那么实数a的取值范围为_.解析根据题意知(92a)(1212a)0,即(a7)(a24)0,解得7a24.答案(7,24)2.若x,y满足则2xy的最大值为_.解析不等式组表示的可行域如图中阴影部分所示.令z2xy,则y2xz,作直线2xy0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2xy的最大值为2124.答案43.不等式x22x的解集是_.解析因为x22x,所以x22x0,解得x0或x2,所以不。

7、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若幂函数y(m23m3)xm2m1的图象不过原点,则实数m的值是()A.1 B.2 C.1或2 D.以上都不对解析由题意得m23m31,即m1或2.当m1时,m2m11;m2时,m2m11.又函数图象不过原点,m2m11,即m1.答案A2.函数f(x)lg (1x1)的图象的对称点为()A.(1,1) B.(0,0) C.(1,1) D.(1,1)解析f(x)lg lg f(x),又1x1,函数yf(x)为奇函数.f(x)lg的图象关于(0,0)对称.答案B3.设a1,函数f(x)logax在区间a,2a上的最大值。

8、章末复习考点一指数函数、对数函数、幂函数的综合应用例1已知函数f(x)lg(10x1)x,g(x),且函数g(x)是奇函数(1)判断函数f(x)的奇偶性,并求实数a的值;(2)若对任意的t(0,)不等式g(t21)g(tk)0恒成立,求实数k的取值范围;(3)设h(x)f(x)x,若存在x(,1,使不等式g(x)h(lg(10b9)成立,求实数b的取值范围解(1)函数f(x)的定义域为R,任意xR有f(x)lg(10x1)(x)lgxlg(10x1)lg 10xxlg(10x1)xf(x),f(x)是偶函数g(x)是奇函数,g(x)的定义域为R,由g(0)0,得a1.(2)由(1)知g(x)3x,易知g(x)在R上单调递增,又g(x)为奇函数g(t21)g(tk)0恒成立,g(t21)g(。

标签 > 指数函数、对数函数和幂函数[编号:7769]