有理数专题复习课件

,有理数的加法,教学课件,湘教版七年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,本赛季,凯旋足球队第一场比赛赢了个球,第二场比赛输了个球,该队这两场比赛的净胜球数是多少?,我们可以把赢1个球记为“+1”,输1

有理数专题复习课件Tag内容描述:

1、,有理数的加法,教学课件,湘教版七年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,本赛季,凯旋足球队第一场比赛赢了个球,第二场比赛输了个球,该队这两场比赛的净胜球数是多少?,我们可以把赢1个球记为“+1”,输1个球记为“-1”,此时该队的净胜 球数为:(+1)+(-1)=?,如何计算除了两个正数之外其余的有理数之和呢?,02 新知探究,新课导入,想一想,在一条东西向的笔直马路上,任取一个点O.若把向东走1km记为1,则向西走1km便记为-1.小丽从点O出发,先向西走了2km,然后。

2、,有理数的除法,教学课件,湘教版七年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,同学们能很快地说出下列算式的结果吗?,小学时我们就知道除法是乘法的逆运算,那它在有理数的运算中也满足吗?,62=,63=,123=,124=,03=,3,2,4,3,0,02 新知探究,新知探究,2(3)=_ ,(4)(3)=_,89=_,0(6)=_,(4)3 =_ ,(6) 2=_,12(4)=_,729=_,(12)(4)=_,0(6)=_,观察左右两侧算式, 我们发现除法是乘法的逆运算,那么当两个有理数相除时:,商的符号如何确定?,商的绝对值又如何确定?,6,72,12,0,3,3,0,3,。

3、 1 专题专题 01 有理数的运算有理数的运算 1有理数:整数和分数统称有理数 正整数、0、负整数统称为整数(0 和正整数统称为自然数) 正分数和负分数统称为分数 理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有 限小数和无限循环小数都可化成分数,都是有理数。 2相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0; (。

4、第 1 页 / 共 8 页 专题专题 01 有理数的运算有理数的运算 一、有理数的概念一、有理数的概念 1有理数的概念:整数和分数统称有理数 正整数、0、负整数统称为整数(0 和正整数统称为自然数) 正分数和负分数统称为分数 理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有 限小数和无限循环小数都可化成分数,都是有理数。 2.有理数大小的比较 (1)正数的绝。

5、,苏科数学,初中数学七年级 上册 (苏科版),2.6 有理数的乘法与除法(1),创设情境-问题,在水文观测中,常遇到水位上升与下降的问题请根据日常生活经验回答下列问题: (1)如果水位每天上升4 cm,那么3天后的水位比今天_(填“高”或者“低”)_cm; 3天前的水位比今天_cm (2)如果水位每天下降4 cm,那么3天后的水位比今天_cm; 3天前的水位比今天_cm,分析:,在水文观测中,常遇到水位上升与下降的问题请根据日常生活经验回答下列问题: (1)如果水位每天上升4 cm,那么3天后的水位比今天高还是低?高(或低)多少?,水库水位的变化,第一天。

6、,苏科数学七年级上册,2.5 有理数的加法与减法(4),苏科数学,先看一个例子: (8)(10)(6)(4), 这是一道有理数的加减混合运算题,你会做吗?请同学们思考练习,苏科数学,议一议,(1)上题可以按照运算顺序,从左到右逐一加以计算;,(2)上题通常也可以用有理数减法法则,把它改写: (8)(10)(6)(4),苏科数学,有理数的加减混合运算,有理数的加减混合运算可以统一为加法运算,苏科数学,尝试解决,例5 计算: (1)258; (2)14251217.,苏科数学,尝试解决,例6 计算 (1)354; (2)2643241346,苏科数学,小结与思考,你还有什么。

7、,苏科数学七年级上册,2.5 有理数的加法与减法(2),苏科数学,(1)(2)(8) ; (2)(15)(21) ; (3) 69 ; (4)(7)(7) ; (5)(41)(3) ;(6)(7)(4) ,算一算,苏科数学,(1)35 , 53 ; (3)(5) , (5)(3) ; 3(5) , (5)3 ,引入负数后,小学里学过的加法交换律和结合律还成立吗?,(2)(35)7 , 3(57) ; 3(5) 7 , 3(5)7 ; 3(5) (7) , 3(5)(7) ,(3)请再举一些例子,(4)通过上面的计算结果,你有什么发现?,苏科数学,有理数的加法运算律,交换律: ab b。

8、,苏科数学,2.5 有理数的加法与减法(1),初中数学七年级 上册 (苏科版),创设情境-问题,甲、乙两队进行足球比赛如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球 你能把上面比赛的过程及结果用有理数的算式表示出来吗? 如果把赢球记为“”,输球记为“”,可得算式:,填写表中净胜球数和相应的算式,通过思考,你能举出一些应用有理数加法的实际例子吗?,数学实验室,1把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“2”的位置上,请用数轴和算式分别表示以上过程及结果,数学。

9、,苏科数学,2.6 有理数的乘法与除法(2),知识回顾,请同学们回顾小学里学习的乘法交换律、结合律和分配律,猜想这些运算律对于有理数是否同样适用?,试一试,(1)任意选择两个有理数(至少有一个是负数),分别填入下列和内,并比较两个运算结果: 和 你能发现什么?请评判自己的猜想,试一试,(2)任意选择三个有理数(至少有一个是负数),分别填入下列 、 和内,并且比较两个运算的结果: ()和() 你能发现什么?请评判自己的猜想,试一试,(3)任意选择三个有理数(至少有一个是负数),分别填入下列、和内,并且比较两个运算的结果:。

10、 专题三 有理数的加减法要点归纳1有理数的加法法则:同号两数相加,取_的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较_的加数的符号;互为相反数的两数相加,和为 0;一个数与 0 相加,仍得这个数2用字母表示加法法则:同号两数相加,若 a0,b0,则 ab_;若 a0,b0,则 ab_;异号两数相加,绝对值不相等时,若 a0,b0,|a| |b|,则 ab_ _;若a0,b0,|a| |b|,则 a b_;若 a0,b0 ,| a|b| ,则 ab_;a0a3有理数减法法则:减去一个数,等于加上这个数的相反数,用式子可以表示为:_4代数和:把加减混合运算统一为省略加。

11、 专题专题 01 有理数的运算有理数的运算 一、有理数的概念一、有理数的概念 1有理数的概念:整数和分数统称有理数 正整数、0、负整数统称为整数(0 和正整数统称为自然数) 正分数和负分数统称为分数 理解:只有能化成分数的数才是有理数。 是无限不循环小数,不能写成分数形式,不是有理数。有限 小数和无限循环小数都可化成分数,都是有理数。 2.有理数大小的比较 (1)正数的绝对值越大,这个数越大; 。

12、第1讲 有理数,1,一、有关概念 1. 有理数的分类 (1)按有理数的意义分类,有理数,一、有关概念 (2)按正、负来分,有理数,2. 数轴三要素:_、_和_;数轴上原点表示的数是_;原点右边表示的数是_,原点左边表示的数是_ 3. 相反数:只有_不相同的_叫做互为相反数;数a的相反数是_(特别地,0的相反数是_);a与b互为相反数_. 4. 倒数:数a(a0)的倒数是_(特别地,_没有倒数),a和b互为倒数_.,原点,正方向,单位长度,0,正数,负数,符号,两个数,-a,0,ab0,0,ab1,二、运算规律 1. 绝对值的几何意义:数轴上表示数a的点与原点的_叫做数a的绝对值,记作_正数。

13、,苏科数学,2.8 有理数的混合运算(2),有理数的混合运算,问题1:有理数混合运算一般按怎样的顺序进行? 小学里,我们学过哪些运算律?,先乘方,再乘除,最后加减如果有括号,先进行括号内的运算 加法交换律、加法结合律、乘法交换律、 乘法结合律,乘法分配律,这些运算律在有理数范围内依然成立,问题2:计算:,例3,计算:,例3,解:,例3,解:,例4,计算:,例4,解:,例4,解:,例4,解:,例5,计算并用计算器检验:,例5,解:,例5,解:,练一练,计算:,课堂小结,谈谈你这一节课有哪些收获,谢 谢!,。

14、,苏科数学,2.8 有理数的混合运算(1),探究归纳,在上面的算式中,有几种运算?,小学里,我们在进行含有加、减、乘、除的混合运算时,是按照怎样的顺序进行的?,探究归纳,先乘方,再乘除,最后加减 如果有括号,先进行括号内的运算,例 1,判断下列计算是否正确,例 2,计算:,练一练,计算:,苏科数学,小结与思考,(1)有理数混合运算的法则是什么?需要注意什么?,(2)你还有哪些收获?,苏科数学,谢谢大家,。

15、 专题一 有理数与数轴的数形结合要点归纳1像 2, ,025,30%等这样大于零的数叫做_;像20, ,025,30% 等这3 32样在正数前面加上负“”的数叫做_2用正、负数可以表示具有相反意义的量,若一个相反意义的量中一个“意义” 规定用“”表示,则另一个“意义”必定用“_”表示3有理数按性质可分为_、_、_;整数和_统称为有理数4我们把规定了_、_、_的直线叫数轴,这条直线上的任意数轴一个点表示一个数,原点左边的数都是_数,原点右边的数都是_数,在实际问题中,一个单位长度可表示一定的数量,如 1 米,1 千米,400 千克等5数轴上的点与有。

16、专题五 有理数的乘方要点归纳1乘方:一般地,n 个相同的因数 a 相乘,即 ,记作 ,读作“a 的 n 次方” ,a 叫an个做 ,n 叫做 ; 求 n 个相同因数的积的运算,叫做 ,乘方 的结果叫做 ,按照结果也可读作 a 的 n 次幂2乘方的性质:负数的奇次幂是 ,负数的偶次幂是 。

17、专题四 有理数乘除法要点归纳1. 有理数乘法:(1)两个数相乘,同号得正,异号得_ ,并把绝对值_;(2) 任何数与 0 相乘,都是_.2. 倒数:乘积是 1 的两个数互为_,_没有倒数,可表示为:若 ab1,则 a 与 b 互为倒数.3. 有理数乘法运算律:(1)乘法交换律 :即_;(2)乘法结合律:即_; (3)分配律:即 a(bc) _.4. 有理数除法:(1)除以一个不等于 0 的数,等于乘以这个数的 _;(2) 两数相除,同号得_,异号得_,并把绝对值_;(3)0 除以任何一个不等于 0 的数,都得_.典例再现一、有理数乘法法则有理数乘法的步骤:先看是否有 0 因数,只要有一个。

18、 第一学期第一学期 七年级数学七年级数学 期末复习专题期末复习专题 有理数有理数 姓名:姓名:_班级:班级:_得分:得分:_ 一一 选择题:选择题: 1.1.如果+20%表示增加 20%,那么6%表示( ) A.增加 14。

19、,苏科数学,2.7 有理数的乘方(1),你吃过拉面吗?,手工拉面是我国的传统面食制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条你能算出拉扣6次后共有多少根面条吗?,试一试!,将一张报纸对折再对折直到无法对折为止你对折了多少次?请用算式表示你对折出来的报纸的层数,你还能举出类似的实例吗?,222222记作26,读作“2的6次方”; 777可记作73;读作“7的3次方” 一般地, 记作an, 读作“a的n次方”,有理数。

20、,苏科数学,2.7 有理数的乘方(2),感受天文数字,“先见闪电后闻雷声”,那是因为光的传播速度大约为300 000 000 ms,而在常温下,声音的传播速度大约为340 ms,光的传播速度远远大于声音的传播速度,今天我们来学习一种用来表示300000000这样的“天文数字”的新的记数方法科学记数法,做一做,1人体中大约有25 000 000 000 000个红细胞先将25 000 000 000 000输入计算器,再按“”键,计算器上是如何显示这个数的? 2用计算器计算8 000 000600 000 000,计算器上是如何显示计算结果的?,做一做,像这些较大的数可以用如下的方法简明地表示: 25 。

【有理数专题复习课件】相关PPT文档
2.6 有理数的乘法与除法(1)ppt课件
2.5 有理数的加法与减法(4)ppt课件
2.5 有理数的加法与减法(2)ppt课件
2.5 有理数的加法与减法(1)ppt课件
2.6有理数的乘法与除法(2)ppt课件
2.8有理数的混合运算(2)ppt课件
2.8有理数的混合运算(1)ppt课件
2.7有理数的乘方(1)ppt课件
2.7有理数的乘方(2)ppt课件
【有理数专题复习课件】相关DOC文档
标签 > 有理数专题复习课件[编号:162103]