全等到相似的转化 知识互联网 题型一:全等到相似的转化(对称型) 典题精练 【例1】 已知正方形的边长为,点是射线上的一个动点,连接交射线于点,将沿直线翻折,点落在点处 当时,_, 当时,求的值; 当时(点与点不重合),请写出翻折后与正方形公共部分的面积与的关系式,(只要写出结论,不要解题过程)
相似数学活动Tag内容描述:
1、全等到相似的转化知识互联网题型一:全等到相似的转化(对称型)典题精练【例1】 已知正方形的边长为,点是射线上的一个动点,连接交射线于点,将沿直线翻折,点落在点处 当时,_, 当时,求的值; 当时(点与点不重合),请写出翻折后与正方形公共部分的面积与的关系式,(只要写出结论,不要解题过程)【解析】 6 ; 如图1,当点在上时,延长交于点,又,设,则,在中,由勾股定理得:,解得; 如图2,当点在延长线上时,延长交于点,同可得设,则在中,由勾股定理,得,解得 当点在上时,; (所求的面积即为的面积,再由相似表示出边。
2、一、选择题1(2019苏州)如图,在ABC中,点D为BC边上的一点且AD=AB=2,ADAB,过点D作DEAD,DE交AC于点F若DE=1,则ABC的面积为( )A4 B4 C2 D8【答案】B【解析】ABAD,ADDE,BADADE90,DEAB,CEDCAB,CC,CEDCAB,DE1,AB2,即DEAB12,SDECSACB14,S四边形ABDESACB34,S四边形ABDESABD+SADE22212+13,SACB4,故选B2.(2019杭州)如图,在ABC中,点D,E分别在AB和AC边上,DEBC,M为BC边上一点(不与点B,C重合)连接AM交DE干点N,则( )A. B. C. D. 【答案】C【解析】根据DEBC,可得ADNABM与ANEAM。
3、2020年中考总复习:图形的相似【考纲要求】1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置【知识网络】【考点梳理】考点一、比例线段1. 比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的。
4、2020中考数学结合专题:圆中的相似问题(含答案)1. 已知:如图,内接于,AB为直径,弦于F,C是AD的中点,连结BD并延长交EC的延长线于点G,连结AD,分别交CE、BC于点P、Q(1)求证:P是的外心;(2)若,求CQ的长;(3)求证:(1)证明;(2);(3).2. 已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作,经过B、D两点,过点B作,垂足为K过D作DHKB,DH分别与AC、AB、及CB的延长线相交于点E、F、G、H(1)求证:;(2)如果,(a为大于零的常数),求BK的长:(3)若F是EG的中点,且,求的半径和GH的长(1)证明;(2); 。
5、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第05讲-图形的相似授课类型T同步课堂P实战演练S归纳总结教学目标 熟练利用成比例线段计算线段的长度; 掌握平行线分线段成比例的常见模型,并准确计算线段长度; 掌握判定三角形相似的三个条件,熟练进行相关证明; 熟练运用三角形相似解决测高等实际问题; 理解三角形相似的性质及图形的位似,并能进行简单计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)比例的性质1.比例中项; 2.合。
6、 第 1 页 共 13 页 中考总复习:中考总复习:图形的相似图形的相似-知识讲解知识讲解(提高(提高) 【考纲要求】考纲要求】 1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质 2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题 3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小 4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出 它的坐标,灵活运用不同方式确定物体的位置 【知识网络】【知识网络】 应用:解决实际问题 3.面积的比。
7、专题专题 21 21 旋转型相似模型旋转型相似模型 一、单选题一、单选题 1如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与 正方形ABCD的对角线AC相交于点H,连接DG以下四个结论:EABGAD; AFCAGD; 2 2AEAH AC;DGAC其中正确的个数为( ) A1 个 B2 个 C3 个 D4 个 【答案】D 【分析】 四边形 AEFG和。
8、第 1 页 共 10 页 中考总复习:中考总复习:图形的相似图形的相似-巩固练习巩固练习(提高)(提高) 【巩固练习】【巩固练习】 一、一、选择题选择题 1如图,四边形ABCD中,BAD=ADC=90,AB=AD=2,CD=1,点P在四边形ABCD的边上若P到BD 的距离为 1,则点P的个数为( ) A1 B2 C3 D4 2. 如图,直角三角形纸片的两直角边长分别为 6、8,按如图那样折叠,使点 A 与点 B 重合,折痕为 DE, 则 SBCE:SBDE等于( ) A. 2:5 B. 14:25 C. 16:25 D. 4:21 3.(2015甘南州)如图,在平行四边形 ABCD 中,E 是 AB 的中点,CE 和 BD 交于点 O,设OCD 。
9、 第 1 页 共 9 页 中考总复习:中考总复习:图形的相似图形的相似-知识讲解知识讲解(基础)(基础) 【考纲要求】考纲要求】 1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质 2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题 3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小 4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出 它的坐标,灵活运用不同方式确定物体的位置 【知识网络】【知识网络】 应用:解决实际问题 3.面积的比。
10、第 1 页 共 8 页 中考总复习:中考总复习:图形的相似图形的相似-巩固练习巩固练习(基础)(基础) 【巩固练习】【巩固练习】 一、一、选择题选择题 1 (2011 山东聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在 x 轴上,OC在 y 轴上,如果矩形OABC与矩形OABC关于点O位似,且矩形OABC的面积等于矩形OABC 面积的 1 4 ,那么点B的坐标是( ) A (3,2) B (2,3) C (2,3)或(2,3) D (3,2)或(3,2) 2. 如图,ABC 中,BC=2,DE 是它的中位线,下面三个结论:DE=1;ADEABC;ADE 的面 积与ABC 的面积之比为 1:4。
11、专题专题 20 20 母子形相似模型母子形相似模型 一、单选题一、单选题 1 古希腊数学家发现“黄金三角形”很美 顶角为36的等腰三角形, 称为“黄金三角形” 如图所示,ABC 中,ABAC,36A ,其中 51 0.618 2 BC AC ,又称为黄金比率, 是著名的数学常数 作ABC 的平分线,交AC于 1 C,得到黄金三角形 1 BCC;作 11/ C BBC交AB于 1 B, 121 。
12、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第05讲-图形的相似授课类型T同步课堂P实战演练S归纳总结教学目标 熟练利用成比例线段计算线段的长度; 掌握平行线分线段成比例的常见模型,并准确计算线段长度; 掌握判定三角形相似的三个条件,熟练进行相关证明; 熟练运用三角形相似解决测高等实际问题; 理解三角形相似的性质及图形的位似,并能进行简单计算。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)比例的性质1.比例中项; 2.合。
13、27.2.3 相似三角形应用举例,人教版 数学 九年级 下册,27.2相似三角形,1. 在前面,我们学过哪些判定三角形相似的方法?相似三角形的性质是什么? 2. 观察下列图片,你会利用相似三角形知识解决一些不能直接测量的物体(如塔高、河宽等)的长度或高度的问题吗?,怎样测量河宽?,世界上最宽的河 亚马逊河,世界上最高的树 红杉,旗杆,乐山大佛,1.能运用三角形相似的性质定理与判定定理进行简单的几何推理.,2.进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,能利用相似三角形的知识设计方案解决一些简单的实际问题,如高度。
14、27.2.2 相似三角形的性质,人教版 数学 九年级 下册,27.2 相似三角形,相似三角形的判定方法有哪几种?,1.对应边成比例,对应角相等的两个三角形相似.,2.平行于三角形一边,与另外两边相交所构成的三 角形与原三角形相似.,3. 三边对应成比例的两三角形相似.,4. 两边成比例且夹角相等的两个三角形相似.,5. 两角分别相等的两个三角形相似.,6. 两边对应成比例的两直角三角形相似.,三角形除了三个角,三条边外,还有哪些要素?,【思考】如果两个三角形相似,那么它们的这些要素有一些怎样的性质呢?,高线,角平分线,中线,面积,周长,1. 在理解相似三角。
15、探索相似三角形相似的条件【巩固练习】一、选择题1在ABC 和A 1B1C1 中,下列四个命题:(1)若 AB= A1B1,AC= A1C1,A= A1,则ABCA 1B1C1;(2)若 AB= A1B1,AC= A1C1,B=B 1,则 ABCA1B1C1;(3)若A= A1,C= C1,则ABCA 1B1C1;(4)若 AC:A 1C1=CB:B 1C1,C=C 1,则 ABCA1B1C1其中真命题的个数为( )A4 个 B3 个 C2 个 D1 个2如图,小正方形的边长均为 1,则下列图形中的三角形(阴影部分)与ABC 相似的是( )3如图,在方格纸中,ABC 和 EPD 的顶点均在格点上,要使ABCEPD,则点 P 所在的格点为( )AP 1 BP 2 CP 3 DP 44如图,在。
16、一、选择题1、 (2018 北京朝阳区第一学期期末检测)小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理. 小楠决定自己也尝试一下,她找了一根长 100cm 的匀质木杆,用细绳绑在木杆的中点 O 并将其吊起来,在中点的左侧距离中点 25cm 处挂了一个重 1.6N 的物体,在中点的右侧挂了一个苹果,当苹果距离中点 20cm 时木杆平衡了,可以估计这个苹果的重大约是(A) 1.28N (B) 1.6N (C) 2N (D) 2.5N答案:C2、 (2018 北京朝阳区第一学期期末检测)如图,ABCABC,AD 和 AD分别是ABC 。
17、27.1 图形的相似,第二十七章 相 似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1. 了解相似图形和相似比的概念. 2. 理解相似多边形的定义. 3. 能根据多边形相似进行相关的计算,会根据条件判断两个多边形是否相似. (重点、难点),导入新课,图片引入,大张伟钟爱的印有易烊千玺头像的 T 恤,观察T恤上的每一个易烊千玺,他们有什么关系?,下面的“神烦狗”有什么相同和不同的地方?,讲授新课,观察与思考,相同点:形状相同 不同点:大小不相同,形状相同的图形叫做相似图形.,相似图形的大小不一定相同.,归纳:,1. 图形的放大:,相似图形的关。
18、 相似多边形及相似三角形的判定相似多边形及相似三角形的判定 通过对本节课的学习,你能够: 掌握相似多边形的性质及应用 掌握相似三角形的判定方法 了解黄金分割 第10讲 适用学科 初中数学 适用年级 初三 适用区域 北师版区域 课时时长(分钟) 120 知识点 判断多边形是否相似 相似多边形的应用 应用 AA 证明三角形相似 应用 SAS、SSS 证明三角形相似 黄金分割 。
19、08 相似形高中必备知识点 1:平行线分线段成比例定理在解决几何问题时,我们常涉及到一些线段的长度、长度比的问题.在数学学习与研究中,我们发现平行线常能产生一些重要的长度比.在一张方格纸上,我们作平行线 123,l(如图 3.1-1) ,直线 a交 123,l于点,ABC, 2,3,另作直线 b交 123,l于点 ,ABC,不难发现.我们将这个结论一般化,归纳出平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图, 123/l,有 ABDECF=.当然,也可以得出 ABDECF.在运用该定理解决问题的过程中,我们一定要注意线段之间的对应关系,是“对。
20、 相似多边形及相似三角形的判定相似多边形及相似三角形的判定 第10讲 适用学科 初中数学 适用年级 初三 适用区域 北师版区域 课时时长(分钟) 120 知识点 判断多边形是否相似 相似多边形的应用 应用 AA 证明三角形相似 应用 SAS、SSS 证明三角形相似 黄金分割 相似综合 教学目标 1、掌握相似多边形的性质及应用. 2、掌握相似三角形的判定方法 3、了解黄金分割。