泰勒斯利用相似三角形测量金字塔高度

第四章图形的相似4.4探究三角形相似的条件第2课时利用两边及夹角判定三角形相似导入新课讲授新课当堂练习课堂小结学习目标1.掌握相似三角形的判定定理4.4探索三角形相似的条件第四章图形的相似第1课时利用两角判定三角形相似导入新课讲授新课当堂练习课堂小结1.理解相似三角形的定义,掌握定义中的两个4.4探

泰勒斯利用相似三角形测量金字塔高度Tag内容描述:

1、一、选择题1、 (2018 北京朝阳区第一学期期末检测)小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理. 小楠决定自己也尝试一下,她找了一根长 100cm 的匀质木杆,用细绳绑在木杆的中点 O 并将其吊起来,在中点的左侧距离中点 25cm 处挂了一个重 1.6N 的物体,在中点的右侧挂了一个苹果,当苹果距离中点 20cm 时木杆平衡了,可以估计这个苹果的重大约是(A) 1.28N (B) 1.6N (C) 2N (D) 2.5N答案:C2、 (2018 北京朝阳区第一学期期末检测)如图,ABCABC,AD 和 AD分别是ABC 。

2、专题训练(四)相似中的综合性问题类型一三角形中的分类讨论题1.如图4-ZT-1,已知P是RtABC的斜边BC上任意一点,过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与ABC相似,那么点D的位置最多有()图4-ZT-1A.2处 B.3处 C.4处 D.5处2.将三角形纸片ABC按图4-ZT-2所示的方式折叠,使点B落在边AC上,记为点B,折痕为EF.已知AB=AC=8,BC=10.若以B,F,C为顶点的三角形与ABC相似,则BF的长度是()图4-ZT-2A.5 B.409C.247或4 D.5或4093.2019铜山月考 如图4-ZT-3,在ABC中,ACB=90,AC=3,BC=2,以AC为斜边向外作RtACD,当AD为何值时,这两个直角三角形相似.图4-ZT。

3、专题复习二 相似的综合应用相似三角形的判定与性质与圆、函数、特殊三角形等知识的综合应用要注意知识之间的关联,应用转化化归思想化繁为简1.如图所示,将ABC 沿 DE 翻折,折痕 DEBC,若 = ,BC=9,则 DE 等于(B).BDA21A.2 B.3 C.4 D.4.5(第 1 题) (第 2 题) (第 3 题)2.如图所示,在ABC 中,C=90,AC=4,BC=3,AB 边上有一点 D,且 AD=AC,过点 D 作DEAB 交 BC 于点 E,则BDE 的周长是(B).A.3 B.4 C.5 D.63.如图所示,E 为ABCD 的边 CB 的延长线上一点,若 = ,则 的值为(C).BE21FAA. B. C.2 D.321314.如图所示,已知在梯形 ABCD 。

4、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.1 图形的相似第 1 课时 相似图形1下列各组图形中,两个图形形状不一定相同的是( )A两个等边三角形B有一个角是 35的两个等腰三角形C两个正方形D两个圆2小张用手机拍摄得到图 2715(1),经放大后得到图 2715(2) ,图 2715(1)中的线段 AB 在图 2715(2)中的对应线段是( )图 2715AFG BFHCEH DEF3图 2716 是大众汽车的标志示意图,下面的图形中与其相似的是( )4对一个图形进行放缩时,下列说法中正确的是( )A图形中线段的长度与角的大小都保持不变B图形中线段的长度与角的大。

5、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.1 图形的相似第 2 课时 相似多边形1一个多边形的边长为 2,3,4,5,6,另一个和它相似的多边形的最长边为 24,则这个多边形的最短边为( )A6 B8C10 D1222018成都已知 ,且 ab2c 6.则 a 的值为 .a6 b5 c43一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割比,则这个人身材好看一位参加空姐选拔的选手的肚脐以上的高度为 65 cm,肚脐以下的高度为 95 cm,那么她应穿多高的鞋子才能符合黄金分割比?(精确到 1 cm,黄金分割比为 ,5 12 2.236)54如图 27111 。

6、27.2.2 相似三角形应用举例 第2课时,1、能应用相似三角形的有关知识解决一些实际问题; 2、进一步了解数学建模的思想,培养分析问题、解决问题的能力.,基本图形归纳,平行型,A型图,X型图,斜截型,解决实际应用问题的关键是根据题意画出图形,或在图中找出基本图形,便于解题.,眼睛在生活中具有非常重要的作用,有它可以欣赏美丽的大好河山,有它可以辨别是非黑白,有它可以传达你对同学们的友爱,但是你有没有想过人眼的视线在相似形中还有非常重要的作用.,【例】已知左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m,。

7、27.2.2 相似三角形应用举例 第1课时,1.能应用相似三角形的有关知识解决一些实际问题; 2.了解数学建模的思想,培养分析问题、解决问题的能力.,相似三角形的判定 (1)通过平行线. (2)三边对应成比例. (3)两边对应成比例且夹角相等 . (4)两角相等.,根据下列条件能否判定ABC与ABC相似? 为什么? (1) A=120,AB=7 ,AC=14 A=120,AB=3,AC=6 (2) AB=4 ,BC=6,AC=8 AB=12,BC=18,AC=21 (3) A=70,B=48, A=70, C=62,【例1】据史料记载,古希腊数学家、天文学家泰勒曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线。

8、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.2 相似三角形27.2.3 相似三角形应用举例12018长春孙子算经 是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有杆不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺同时立一根一尺五寸的小标杆,它的影长五寸(提示:1 丈10 尺,1 尺10 寸) ,则竹竿的长为( )A五丈 B四丈五尺C一丈 D五尺22018绍兴学校门口的栏杆如图 27252 所示,栏杆从水平位置 BD 绕 O 点旋。

9、,导入新课,讲授新课,当堂练习,课堂小结,27.2 相似三角形,第二十七章 相 似,27.2.3 相似三角形应用举例,学习目标,1. 能够利用相似三角形的知识,求出不能直接测量的物体的高度和宽度. (重点) 2. 进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,提高分析问题、解决问题的能力. (难点),乐山大佛,导入新课,图片引入,世界上最高的树 红杉,台湾最高的楼台北101大楼,世界上最宽的河亚马逊河,怎样测量河宽?,讲授新课,据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳。

10、课时训练(二十三) 相似三角形的应用(限时:40 分钟)|考场过关 |1.如图 K23-1,一张 矩形纸片 ABCD 的长 AB=a,宽 BC=b.将纸片对折,折痕为 EF,所得矩形 AFED 与矩形 ABCD 相似,则a b= ( )图 K23-1A.2 1 B. 1 C.3 D.3 22 32.如图 K23-2,为了估计河的宽度,在河的对岸选定一个目标点 A,在近岸取点 B,C,D,E,使点 A,B,D 在一条直线上,且ADDE,点 A,C,E 也在一条直线上,且 DEBC. 若 BC=24 m,BD=12 m,DE=40 m,则河的宽度 AB 约为 ( )图 K23-2A.20 m B.18 m C.28 m D.30 m3.2017天水 如图 K23-3 所示 ,路灯距离地面 8 米,身高 1.6 米的小明在距离路灯的。

11、第4课时利用三边证相似知识点 1判定两个三角形相似1.如图6-4-43,在44的正方形网格中各有一个三角形,其中与图中的三角形相似的是 ()图6-4-43A. B.C.和 D.和2.在ABC中,ABBCCA=234,在ABC中,AB=1,CA=2,当BC=时,ABCABC.3.如图6-4-44,在ABC和DEF中,已知ABDE=BCEF,再添加一个条件:,可使ABCDEF.图6-4-444.已知一个三角形的三边长分别是6 cm,7.5 cm,9 cm,另一个三角形的三边长分别是8 cm,10 cm,12 cm,则这两个三角形(填“相似”或“不相似”).5.根据下列条件,判断ABC与ABC是。

12、第3课时利用两边及夹角证相似知识点 1判定两个三角形相似1.2018宜兴一模 已知ABC如图6-4-30所示,则图6-4-31中与ABC相似的是()图6-4-30图6-4-312.如图6-4-32,AB,CD交于点O,且OC=45,OD=30,OB=36,当OA=时,AOCBOD;当OA=时,AOCDOB.图6-4-323.如图6-4-33,在ABC中,ABAC,D,E分别为边AB,AC上的点,AC=3AD,AB=3AE,F为BC边上一点,添加一个条件:,使得FDB与ADE相似.(只需写出一个)图6-4-334.如图6-4-34所示,在ABC中,AB=6,AC=5,BC=4,在ADE中,AD=4,AE=103.求证:ADEABC.图6-4-345.2018邗江区期末 如图6-4-35,在44的正方形网格中,ABC和DEF的顶点都在边长为1。

13、第2课时利用两角证相似知识点 1判定两个三角形相似1.在ABC和ABC中,若A=68,B=40,A=68,C=72,则这两个三角形()A.不相似 B.相似C.全等 D.无法确定2.具备下列条件的各组三角形中,不一定相似的是()A.有一个角是40的两个等腰三角形B.两个等腰直角三角形C.有一个角为100的两个等腰三角形D.两个等边三角形3.如图6-4-16,在ABC中,ACB=90,CDAB,则图中的相似三角形有()图6-4-16A.1对 B.2对 C.3对 D.4对4.2017姑苏区期末 如图6-4-17,在四边形ABCD中,AC平分BCD,要ABCDAC,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)。

14、6.4第1课时利用平行证相似知识点 1平行线分线段成比例的基本事实1.如图6-4-1,abc,直线m,n与直线a,b,c分别相交于点A,B,C和点D,E,F.(1)若AB=BC,则DEEF(填“”“”或“=”);(2)ABBC=,ABAC=,ACBC=.图6-4-12.如图6-4-2,已知ABCDEF,则在下列关系式中一定成立的是()图6-4-2A.ACCE=DFBD B.BDAC=CEDFC.ACBD=CEDF D.ACAE=DFBF3.2018乐山 如图6-4-3,DEFGBC,若DB=4FB,则EG与GC的关系是()图6-4-3A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC4.如图6-4-4,已知ABCD,AC与BD交于点O,则下列比例式中成立的是()图6-4-4。

15、专题训练(三)相似三角形基本模型模型一“X”形1.如图3-ZT-1,ABCD,AD与BC相交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为.图3-ZT-12.如图3-ZT-2,在矩形ABCD中,AB=3,BC=6,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则CFCD=.图3-ZT-23.2018江西 如图3-ZT-3,在ABC中,AB=8,BC=4,CA=6,CDAB,BD是ABC的平分线,交AC于点E.求AE的长.图3-ZT-3模型二“A”形4.如图3-ZT-4,在ABC中,点D,E分别在边AB,AC上,DEBC,若BD=2AD,则()图3-ZT-4A.ADAB=12 B.AEEC=12C.ADEC=12 D.DEBC=125.如图3-ZT-5,已知ADEABC,若ADE=37,则B=.。

16、4.6 利用相似三角形测高利用相似三角形测高 1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验; (重点) 2.灵活运用三角形相似的知识解决实际问题.(难点) 一、情景导入 胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一” ,古希腊数学家、 天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度. 你能根据图示说出他测量金字塔的原理吗? 二、合作。

17、4.6 利用相似三角形测高,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,1.通过测量旗杆的高度的活动,并复习巩固相似三角形有关知识.(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点),学习目标,世界上最高的树 红杉,导入新课,乐山大佛,台北101大楼,怎样测量这些非常高大物体的高度?,胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家,天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度,你能根据图示说出他测量金字塔的原理吗?,讲授新课,例1:如下图,如果木杆EF长2 m。

18、4.4 探究三角形相似的条件,第四章 图形的相似,第3课时 利用三边判定三角形相似,导入新课,讲授新课,当堂练习,课堂小结,1.掌握相似三角形的判定定理3;(重点) 2.能熟练运用相似三角形的判定定理3(难点),学习目标,定义法:三个角分别相等,三条边成比例的两个三角形相似.,问题1:判定两个三角形相似我们学过了哪些方法?,*引理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(也可由AA证明得到相似),具备两个条件:(1) DEBC;(2)两个三角形在同一图形中.,导入新课,复习与回顾,思考:类比全等三角形的判定方法,还。

19、4.4 探索三角形相似的条件,第四章 图形的相似,第1课时 利用两角判定三角形相似,导入新课,讲授新课,当堂练习,课堂小结,1.理解相似三角形的定义,掌握定义中的两个条件. 2.掌握相似三角形的判定定理1.(重点) 3.能熟练运用相似三角形的判定定理1.(难点),学习目标,问题1:这两个三角形有什么关系?,观察与思考,全等三角形,那这样变化一下呢?,相似三角形,相似三角形定义:我们把三角分别相等、三边成比例的两个三角形叫做相似三角形。,对应角?,对应边?,问题2 相似多边形的定义是什么?那根据相似多边形的定义,你能说说什么叫相似三角形。

20、第四章 图形的相似,4.4 探究三角形相似的条件,第2课时 利用两边及夹角判定三角形相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.掌握相似三角形的判定定理2;(重点) 2.能熟练运用相似三角形的判定定理2(难点),问题1.有两边对应成比例的两个三角形相似吗?,不相似,观察与思考,问题2.类比三角形全等的判定方法(SAS,SSS),猜想可以添加什么条件来判定两个三角形相似?,相似,导入新课,任意画ABC; 再画ABC,使A=A,且 量出BC及BC的长,计算 的值,并比较是否三边都对应成比例? 量出B与B的度数,B=B吗?由此可推出C=C吗?为什么? 。

【泰勒斯利用相似三角形测量】相关PPT文档
【泰勒斯利用相似三角形测量】相关DOC文档
标签 > 泰勒斯利用相似三角形测量金字塔高度[编号:18598]